Preview

Diabetes mellitus

Advanced search

Metabolic characteristics and therapeutic potential of brown and ?beige? adipose tissues

https://doi.org/10.14341/DM201445-15

Abstract

According to the International Diabetes Federation, 10.9 million people have diabetes mellitus (DM) in Russia; however, only up to 4 million are registered. In addition, 11.9 million people have impaired glucose tolerance and impaired fasting glucose levels [1].
One of the significant risk factors for type 2 DM (T2DM) is obesity, which increases insulin resistance (IR). IR is the major pathogenetic link to T2DM.
According to current concepts, there are three types of adipose tissue: white adipose tissue (WAT), brown adipose tissue (BAT) and ?beige?, of which the last two types have a thermogenic function. Some research results have revealed the main stages in the development of adipocytes; however, there is no general consensus regarding the development of ?beige? adipocytes. Furthermore, the biology of BAT and ?beige? adipose tissue is currently being intensively investigated, and some key transcription factors, signalling pathways and hormones that promote the development and activation of these tissues have been identified. The most discussed hormones are irisin and fibroblast growth factor 21, which have established positive effects on BAT and ?beige? adipose tissue with regard to carbohydrate, lipid and energy metabolism. The primary imaging techniques used to investigate BAT are PET-CT with 18F-fluorodeoxyglucose and magnetic resonance spectroscopy.
With respect to the current obesity epidemic and associated diseases, including T2DM, there is a growing interest in investigating adipogenesis and the possibility of altering this process. BAT and ?beige? adipose tissue may be targets for developing drugs directed against obesity and T2DM.

About the Authors

Ekaterina Olegovna Koksharova
Endocrinology Research Centre, Moscow
Russian Federation
MD, PhD-student in Diabetes Institute
Competing Interests: Автор заявляет об отсутствии конфликта интересов, связанных с публикацией


Alexander Yur'evich Mayorov
Endocrinology Research Centre, Moscow
Russian Federation
MD, PhD, Head of Programm education and treatment department in Diabetes institute of Endocrinology Research Centre
Competing Interests: Автор заявляет об отсутствии конфликта интересов, связанных с публикацией


Marina Vladimirovna Shestakova
Endocrinology Research Centre, Moscow
Russian Federation
MD, PhD, Professor, Corresponding fellow of Russian Academy of Sciences, Director of Diabetes Institute in Endocrinology Research Centre
Competing Interests: Автор заявляет об отсутствии конфликта интересов, связанных с публикацией


Ivan Ivanovich Dedov
Endocrinology Research Centre, Moscow
Russian Federation
MD, PhD, Professor, Academician of Russian Academy of Sciences, Director of Endocrinology Research Centre


References

1. IDF Diabetes Atlas. 6-th edition. 2013. Available from: http://www.idf.org/diabetesatlas

2. Lidell ME, Betz MJ, Enerbäck S. Brown adipose tissue and its therapeutic potential. J Intern Med 2014;276(4):364-377. Available from: http://doi.wiley.com/10.1111/joim.12255 doi: 10.1111/joim.12255.

3. Ouellet V, Routhier-Labadie A, Bellemare W, Lakhal-Chaieb L, Turcotte E, Carpentier AC, et al. Outdoor Temperature, Age, Sex, Body Mass Index, and Diabetic Status Determine the Prevalence, Mass, and Glucose-Uptake Activity of 18 F-FDG-Detected BAT in Humans. The Journal of Clinical Endocrinology & Metabolism 2011;96(1):192-199. Available from: http://press.endocrine.org/doi/abs/10.1210/jc.2010-0989 PubMed PMID: 20943785. doi: 10.1210/jc.2010-0989.

4. Kajimura S, Saito M. A New Era in Brown Adipose Tissue Biology: Molecular Control of Brown Fat Development and Energy Homeostasis. Annu. Rev. Physiol 2014;76(1):225-249. Available from: http://www.annualreviews.org/doi/abs/10.1146/annurev-physiol-021113-170252 PubMed PMID: 24188710. doi: 10.1146/annurev-physiol-021113-170252.

5. Golozoubova V, Hohtola E, Matthias A, Jacobsson A, Cannon B, Nedergaard J. Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J 2001;15(11):2048-2050. Available from: http://www.fasebj.org/cgi/pmidlookup?view=long&pmid=11511509 PubMed PMID: 11511509. doi: 10.1096/fj.00-0536fje.

6. Fedorenko A, Lishko PV, Kirichok Y. Mechanism of Fatty-Acid-Dependent UCP1 Uncoupling in Brown Fat Mitochondria. Cell 2012;151(2):400-413. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0092867412011130 doi: 10.1016/j.cell.2012.09.010.

7. Grundlingh J, Dargan PI, El-Zanfaly M, Wood DM. 2,4-Dinitrophenol (DNP): A Weight Loss Agent with Significant Acute Toxicity and Risk of Death. J. Med. Toxicol 2011;7(3):205-212. Available from: http://link.springer.com/10.1007/s13181-011-0162-6 PubMed PMID: 21739343. doi: 10.1007/s13181-011-0162-6.

8. Feldmann HM, Golozoubova V, Cannon B, Nedergaard J. UCP1 Ablation Induces Obesity and Abolishes Diet-Induced Thermogenesis in Mice Exempt from Thermal Stress by Living at Thermoneutrality. Cell Metabolism 2009;9(2):203-209. Available from: http://linkinghub.elsevier.com/retrieve/pii/S155041310800421X PubMed PMID: 19187776. doi: 10.1016/j.cmet.2008.12.014.

9. Nedergaard J, Cannon B. UCP1 mRNA does not produce heat. Biochim Biophys Acta 2013;1831(5):943-949. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1388198113000279 doi: 10.1016/j.bbalip.2013.01.009.

10. Lee P, Swarbrick MM, Ho KKY. Brown Adipose Tissue in Adult Humans: A Metabolic Renaissance. Endocrine Reviews 2013;34(3):413-438. Available from: http://press.endocrine.org/doi/abs/10.1210/er.2012-1081 PubMed PMID: 23550082. doi: 10.1210/er.2012-1081.

11. Park A. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. WJSC 2014;6(1):33-42. Available from: http://www.wjgnet.com/1948-0210/full/v6/i1/33.htm doi: 10.4252/wjsc.v6.i1.33.

12. Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 2013;19(10):1338-1344. Available from: http://www.nature.com/doifinder/10.1038/nm.3324 PubMed PMID: 23995282. doi: 10.1038/nm.3324.

13. Rosenwald M, Wolfrum C. The origin and definition of brite versus white and classical brown adipocytes. Adipocyte 2013;3(1):4-9. Available from: http://www.tandfonline.com/doi/abs/10.4161/adip.26232 PubMed PMID: 24575363. doi: 10.4161/adip.26232.

14. Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP, et al. Initiation of myoblast to brown fat switch by a PRDM16–C/EBP-β transcriptional complex. Nature 2009;460(7259):1154-1158. Available from: http://www.nature.com/doifinder/10.1038/nature08262 PubMed PMID: 19641492. doi: 10.1038/nature08262.

15. Lee Y, Petkova AP, Mottillo EP, Granneman JG. In Vivo Identification of Bipotential Adipocyte Progenitors Recruited by β3-Adrenoceptor Activation and High-Fat Feeding. Cell Metabolism 2012;15(4):480-491. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1550413112001052 PubMed PMID: 22482730. doi: 10.1016/j.cmet.2012.03.009.

16. Sanchez-Gurmaches J, Hung C, Sparks CA, Tang Y, Li H, Guertin DA. PTEN Loss in the Myf5 Lineage Redistributes Body Fat and Reveals Subsets of White Adipocytes that Arise from Myf5 Precursors. Cell Metabolism 2012;16(3):348-362. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1550413112003257 PubMed PMID: 22940198. doi: 10.1016/j.cmet.2012.08.003.

17. Wu J, Boström P, Sparks LM, Ye L, Choi J, Giang A, et al. Beige Adipocytes Are a Distinct Type of Thermogenic Fat Cell in Mouse and Human. Cell 2012;150(2):366-376. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0092867412005958 doi: 10.1016/j.cell.2012.05.016.

18. Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L, et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One 2012;7(11):49452. Available from: http://dx.plos.org/10.1371/journal.pone.0049452 PubMed PMID: 23166672. doi: 10.1371/journal.pone.0049452.

19. Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: Is beige the new brown. Genes & Development 2013;27(3):234-250. Available from: http://genesdev.cshlp.org/cgi/doi/10.1101/gad.211649.112 doi: 10.1101/gad.211649.112.

20. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and Importance of Brown Adipose Tissue in Adult Humans. N Engl J Med 2009;360(15):1509-1517. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa0810780 doi: 10.1056/NEJMoa0810780.

21. Hu HH, Gilsanz V. Developments in the Imaging of Brown Adipose Tissue and its Associations with Muscle, Puberty, and Health in Children. Front. Endocrin 2011;2(2):33-3389. Available from: http://journal.frontiersin.org/Journal/10.3389/fendo.2011.00033/full PubMed PMID: 22649372. doi: 10.3389/fendo.2011.00033.

22. Branca RT, Zhang L, Warren WS, Auerbach E, Khanna A, Degan S, et al. In vivo noninvasive detection of Brown Adipose Tissue through intermolecular zero-quantum MRI. PLoS One 2013;8(9):74206. Available from: http://dx.plos.org/10.1371/journal.pone.0074206 PubMed PMID: 24040203. doi: 10.1371/journal.pone.0074206.

23. Arrojo E Drigo R , Fonseca TL, Werneck-de-Castro JP, Bianco AC. Role of the type 2 iodothyronine deiodinase (D2) in the control of thyroid hormone signaling. Biochim Biophys Acta 2013;1830(7):3956-3964. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0304416512002450 doi: 10.1016/j.bbagen.2012.08.019.

24. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional Brown Adipose Tissue in Healthy Adults. N Engl J Med 2009;360(15):1518-1525. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa0808949 doi: 10.1056/NEJMoa0808949.

25. Kajimura S, Seale P, Tomaru T, Erdjument-Bromage H, Cooper MP, Ruas JL, et al. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes & Development 2008;22(10):1397-1409. Available from: http://www.genesdev.org/cgi/doi/10.1101/gad.1666108 doi: 10.1101/gad.1666108.

26. Mori M, Nakagami H, Rodriguez-Araujo G, Nimura K, Kaneda Y. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol 2012;10(4):1001314. Available from: http://dx.plos.org/10.1371/journal.pbio.1001314 PubMed PMID: 22545021. doi: 10.1371/journal.pbio.1001314.

27. Ohno H, Shinoda K, Spiegelman BM, Kajimura S. PPARγ agonists Induce a White-to-Brown Fat Conversion through Stabilization of PRDM16 Protein. Cell Metabolism 2012;15(3):395-404. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1550413112000502 PubMed PMID: 22405074. doi: 10.1016/j.cmet.2012.01.019.

28. Cederberg A, Grønning LM, Ahrén B, Taskén K, Carlsson P, Enerbäck S. FOXC2 Is a Winged Helix Gene that Counteracts Obesity, Hypertriglyceridemia, and Diet-Induced Insulin Resistance. Cell 2001;106(5):563-573. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0092867401004743 PubMed PMID: 11551504. doi: 10.1016/S0092-8674(01)00474-3.

29. Kim JK, Kim HJ, Park SY, Cederberg A, Westergren R, Nilsson D, et al. Adipocyte-Specific Overexpression of FOXC2 Prevents Diet-Induced Increases in Intramuscular Fatty Acyl CoA and Insulin Resistance. Diabetes 2005;54(6):1657-1663. Available from: http://diabetes.diabetesjournals.org/cgi/doi/10.2337/diabetes.54.6.1657 PubMed PMID: 15919786. doi: 10.2337/diabetes.54.6.1657.

30. Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 2010;298(6):1244-1253. doi: 10.1152/ajpendo.00600.2009.

31. Haas B, Mayer P, Jennissen K, Scholz D, Berriel Diaz M, Bloch W, et al. Protein kinase G controls brown fat cell differentiation and mitochondrial biogenesis. Sci Signal 2009;2(99):78. Available from: http://toxnet.nlm.nih.gov/cgi-bin/sis/search/r?dbs+hsdb:@term+@rn+10102-43-9 PubMed PMID: 19952371. doi: 10.1126/scisignal.2000511.

32. Ortega-Molina A, Efeyan A, Lopez-Guadamillas E, Muñoz-Martin M, Gómez-López G, Cañamero M, et al. Pten Positively Regulates Brown Adipose Function, Energy Expenditure, and Longevity. Cell Metabolism 2012;15(3):382-394. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1550413112000484 PubMed PMID: 22405073. doi: 10.1016/j.cmet.2012.02.001.

33. Wei W, Dutchak PA, Wang X, Ding X, Wang X, Bookout AL, et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor. Proceedings of the National Academy of Sciences 2012;109(8):3143-3148. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1200797109 PubMed PMID: 22315431. doi: 10.1073/pnas.1200797109.

34. Iglesias P, Selgas R, Romero S, Diez JJ. MECHANISMS IN ENDOCRINOLOGY: Biological role, clinical significance, and therapeutic possibilities of the recently discovered metabolic hormone fibroblastic growth factor 21. European Journal of Endocrinology 2012;167(3):301-309. Available from: http://www.eje-online.org/cgi/doi/10.1530/EJE-12-0357 PubMed PMID: 22740503. doi: 10.1530/EJE-12-0357.

35. Hojman P, Pedersen M, Nielsen AR, Krogh-Madsen R, Yfanti C, Akerstrom T, et al. Fibroblast Growth Factor-21 Is Induced in Human Skeletal Muscles by Hyperinsulinemia. Diabetes 2009;58(12):2797-2801. Available from: http://diabetes.diabetesjournals.org/cgi/doi/10.2337/db09-0713 doi: 10.2337/db09-0713.

36. Mashili FL, Austin RL, Deshmukh AS, Fritz T, Caidahl K, Bergdahl K, et al. Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity. Diabetes Metab. Res. Rev 2011;27(3):286-297. Available from: http://doi.wiley.com/10.1002/dmrr.1177 PubMed PMID: 21309058. doi: 10.1002/dmrr.1177.

37. Irving BA, Still CD, Argyropoulos G. Does IRISIN Have a BRITE Future as a Therapeutic Agent in Humans. Curr Obes Rep 2014;3(2):235-241. Available from: http://link.springer.com/10.1007/s13679-014-0091-1 PubMed PMID: 24818073. doi: 10.1007/s13679-014-0091-1.

38. Madsen L, Pedersen LM, Lillefosse HH, Fjaere E, Bronstad I, Hao Q, et al. UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity. PLoS One 2010;5(6):11391. Available from: http://dx.plos.org/10.1371/journal.pone.0011391 PubMed PMID: 20613988. doi: 10.1371/journal.pone.0011391.

39. Wang Q, Zhang M, Ning G, Gu W, Su T, Xu M. Brown adipose tissue in humans is activated by elevated plasma catecholamines levels and is inversely related to central obesity. PLoS One 2011;6(6):21006. doi: 10.1371/journal.pone.0021006.

40. Peirce V, Vidal-Puig A. Regulation of glucose homoeostasis by brown adipose tissue. The Lancet Diabetes & Endocrinology 2013;1(4):353-360. Available from: http://linkinghub.elsevier.com/retrieve/pii/S221385871370055X doi: 10.1016/S2213-8587(13)70055-X.

41. Stanford KI, Middelbeek RJW, Townsend KL, An D, Nygaard EB, Hitchcox KM, et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Invest 2013;123(1):215-223. Available from: http://www.jci.org/articles/view/62308 doi: 10.1172/JCI62308.

42. Lockie SH, Stefanidis A, Oldfield BJ, Perez-Tilve D. Brown adipose tissue thermogenesis in the resistance to and reversal of obesity: A potential new mechanism contributing to the metabolic benefits of proglucagon-derived peptides. Adipocyte 2013;2(4):196-200. Available from: http://www.tandfonline.com/doi/abs/10.4161/adip.25417 doi: 10.4161/adip.25417.


Supplementary files

Review

For citations:


Koksharova E.O., Mayorov A.Yu., Shestakova M.V., Dedov I.I. Metabolic characteristics and therapeutic potential of brown and ?beige? adipose tissues. Diabetes mellitus. 2014;17(4):5-15. https://doi.org/10.14341/DM201445-15

Views: 1036


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)