Preview

Diabetes mellitus

Advanced search

Significance of the results of genome-wide association studies for primary prevention of type 2 diabetes mellitus and its complications. Personalised approach

https://doi.org/10.14341/DM2014210-19

Abstract

The method of Genome-Wide Association Studies (GWAS) steadily becomes the basis for searching for candidate genes of monogenic and multifactorial diseases, including type 1 and 2 diabetes mellitus, coronary heart disease, obesity, vascular diseases, and others. To date, approximately 40 loci associated with type 2 diabetes mellitus (T2DM) have been identified and genetic predisposition factors for cardiovascular diseases have been determined. In some cases, the GWAS results not only enable understanding of the pathophysiologic basis for diseases, but also may give rise to new drugs. However, the question naturally arises about the possibility of implementing the accumulated knowledge to predict the development of diseases, including T2DM and its vascular complications. This review summarises the literature data on the possibilities to use the GWAS results to calculate the risk of developing diabetes and cardiovascular diseases. Determination of the individual genetic risk will allow for the primary prevention of diseases and will apparently be the basis of personalised predictive medicine in the near future.

About the Authors

Ivan Ivanovich Dedov
Endocrinology Research Centre, Moscow
Russian Federation
MD, PhD, Professor, Member of Russian Academy of Sciences, Director of Endocrinology Research Centre (Moscow)
Competing Interests:

авторы декларируют отсутсвие конфликтов интересов, связанных с изложенными в статье данными



Olga Mikhailovna Smirnova
Endocrinology Research Centre, Moscow
Russian Federation
MD, PhD, Professor, Cheif Researcher in Programm Education and Treatment department in Diabetes Institute of Endocrinology Research Centre (Moscow)
Competing Interests:

авторы декларируют отсутсвие конфликтов интересов, связанных с изложенными в статье данными



Irina Vladimirovna Kononenko
Endocrinology Research Centre, Moscow
Russian Federation
MD, PhD, Leading Researcher in Programm Education and Treatment department in Diabetes Institute of Endocrinology Research Centre (Moscow)
Competing Interests:

авторы декларируют отсутсвие конфликтов интересов, связанных с изложенными в статье данными



References

1. Доклад Первого заместителя председателя Комитета Государственной Думы по охране здоровья, заведующего кафедрой основ законодательства в здравоохранении Первого Московского медицинского университета имени И.М. Сеченова академика РАМН Николая Федоровича Герасименко, Барнаул 2012. [Doklad Pervogo zamestitelya predsedatelya Komiteta Gosudarstvennoy Dumy po okhrane zdorovya, zaveduyushchego kafedroy osnov zakonodatelstva v zdravookhranenii Pervogo Moskovskogo meditsinskogo universiteta imeni I.M. Sechenova akademika RAMN Nikolaya Fedorovicha Gerasimenko. Barnaul: 2012.]

2. Баранов ВС, Глотов АС, Иващенко ТЭ. Генетический паспорт – основа индивидуальной и предиктивной медицины. Санкт-Петербург: Издательство Н-Л; 2009.[Baranov VS, Glotov AS, Ivashchenko TE. Genetic passport - the basis of individual and predictive medicine. Saint-Petersburg: Publisher N-L; 2009.]

3. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Под редакцией И.И. Дедова, М.В. Шестаковой (6-й выпуск). Сахарный диабет. 2013;(1s):1-120. [Dedov II, Shestakova MV, Aleksandrov AA, Galstyan GR, Grigoryan OR, Esayan RM, et al. Standards of specialized diabetes care. Edited by Dedov II, Shestakova MV (6th edition. Diabetes mellitus 2013; (1S):1-120.] Available from: http://endojournals.ru/index.php/dia/article/view/6274 doi: 10.14341/DM20131S1-121

4. Hu FB. Globalization of Diabetes: The role of diet, lifestyle, and genes. Diabetes Care 2011;34(6):1249-1257. Available from: http://care.diabetesjournals.org/cgi/doi/10.2337/dc11-0442 doi: 10.2337/dc11-0442.

5. Smushkin G, Vella A. Genetics of type 2 diabetes. Current Opinion in Clinical Nutrition and Metabolic Care 2010;13(4):471-477. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00075197-201007000-00022 doi: 10.1097/MCO.0b013e32833a558d.

6. Гинтер ЕК. Медицинская генетика. Учебная литература для студентов медицинских вузов. Москва: «Медицина»; 2003. [Ginter EC. Medical Genetics. Books and textbooks for medical students. Moscow: Medicine; 2003.]

7. International HapMap Consortium. A haplotype map of the human genome. Nature 2005;437(7063):1299-1320. Available from: http://www.nature.com/doifinder/10.1038/nature04226 doi: 10.1038/nature04226.

8. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007;445(7130):881-885. Available from: http://www.nature.com/doifinder/10.1038/nature05616 doi: 10.1038/nature05616.

9. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 2007;39(6):770-775. Available from: http://www.nature.com/doifinder/10.1038/ng2043 PubMed PMID: 17460697. doi: 10.1038/ng2043.

10. Imamura M, Maeda S. Genetics of type 2 diabetes: the GWAS era and future perspectives [Review]. Endocr J 2011;58(9):723-739. Available from: http://joi.jlc.jst.go.jp/JST.JSTAGE/endocrj/EJ11-0113?from=CrossRef doi: 10.1507/endocrj.EJ11-0113.

11. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 2010;42(7):579-589. Available from: http://www.nature.com/doifinder/10.1038/ng.609 doi: 10.1038/ng.609.

12. Locke JM, Da Silva Xavier G , Rutter GA, Harries LW. An alternative polyadenylation signal in TCF7L2 generates isoforms that inhibit T cell factor/lymphoid-enhancer factor (TCF/LEF)-dependent target genes. Diabetologia 2011;54(12):3078-3082. Available from: http://link.springer.com/10.1007/s00125-011-2290-6 doi: 10.1007/s00125-011-2290-6.

13. Chimienti F, Devergnas S, Favier A, Seve M. Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 2004;53(9):2330-2337. Available from: http://diabetes.diabetesjournals.org/cgi/pmidlookup?view=long&pmid=15331542 PubMed PMID: 15331542.

14. Pulizzi N, Lyssenko V, Jonsson A, Osmond C, Laakso M, Kajantie E, et al. Interaction between prenatal growth and high-risk genotypes in the development of type 2 diabetes. Diabetologia 2009;52(5):825-829. Available from: http://link.springer.com/10.1007/s00125-009-1291-1 PubMed PMID: 19225753. doi: 10.1007/s00125-009-1291-1.

15. Schafer SA, Tschritter O, Machicao F, Thamer C, Stefan N, Gallwitz B. Impaired glucagonlike peptide-1-induced insulin secretion in carriers of ranscription factor 7-like 2 (TCF7L2) gene polymorphisms. Diabetologia 2007;50(12):2443-2450.

16. Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA, et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J. Clin. Invest 2007;117(5):1422-1431. Available from: http://www.jci.org/cgi/doi/10.1172/JCI30558 PubMed PMID: 17476361. doi: 10.1172/JCI30558.

17. van Leeuwen N, Nijpels G, Becker ML, Deshmukh H, Zhou K, Stricker BHC, et al. A gene variant near ATM is significantly associated with metformin treatment response in type 2 diabetes: a replication and meta-analysis of five cohorts. Diabetologia 2012;55(7):1971-1977. Available from: http://europepmc.org/abstract/MED/22453232 PubMed PMID: 22453232. doi: 10.1007/s00125-012-2537-x.

18. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma).. J Biol Chem 1995;270(22):12953-12956. Available from: http://www.jbc.org/cgi/pmidlookup?view=long&pmid=7768881 PubMed PMID: 7768881. doi: 10.1074/jbc.270.22.12953.

19. Sagen JV, Raeder H, Hathout E, Shehadeh N, Gudmundsson K, Baevre H, et al. Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy. Diabetes 2004;53(10):2713-2718. Available from: http://diabetes.diabetesjournals.org/cgi/pmidlookup?view=long&pmid=15448106 PubMed PMID: 15448106.

20. Vella A, Cooper J, Lowe C, Walker N, Nutland S, Widmer B, et al. Localization of a Type 1 Diabetes Locus in the IL2RA/CD25 Region by Use of Tag Single-Nucleotide Polymorphisms. The American Journal of Human Genetics 2005;76(5):773-779. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0002929707607241 doi: 10.1086/429843.

21. Florez JC, Jablonski KA, Bayley N, Pollin TI, de Bakker PIW, Shuldiner AR, et al. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J med 2006;20:241-250.

22. NicholsGA, HillierTA, Brown JB. Normal fasting plasma glucose and risk of type 2 diabetes diagnosis. Am J Med 2008;121(6):519-524. doi: 10.1016/j.amjmed.2008.02.026.

23. Barker A, Sharp SJ, Timpson NJ, Bouatia-Naji N, Warrington NM, Kanoni S, et al. Association of genetic Loci with glucose levels in childhood and adolescence: a meta-analysis of over 6,000 children. Diabetes 2011;60(6):1805-1812. Available from: http://diabetes.diabetesjournals.org/cgi/pmidlookup?view=long&pmid=21515849 PubMed PMID: 21515849. doi: 10.2337/db10-1575.

24. Meigs JB, Shrader P, Sullivan LM, McAteer JB, Fox CS, Dupuis J, et al. Genotype Score in Addition to Common Risk Factors for Prediction of Type 2 Diabetes. N Engl J Med 2008;359(21):2208-2219. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa0804742 PubMed PMID: 19020323. doi: 10.1056/NEJMoa0804742.

25. Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T, et al. Clinical Risk Factors, DNA Variants, and the Development of Type 2 Diabetes. N Engl J Med 2008;359(21):2220-2232. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa0801869 doi: 10.1056/NEJMoa0801869.

26. de Miguel-Yanes JM, Shrader P, Pencina MJ, Fox CS, Manning AK, Grant RW, et al. Genetic risk reclassification for type 2 diabetes by age below or above 50 years using 40 type 2 diabetes risk single nucleotide polymorphisms. Diabetes Care 2010;34(1):121-125. Available from: http://europepmc.org/abstract/MED/20889853 PubMed PMID: 20889853. doi: 10.2337/dc10-1265. .

27. Stancáková A, Kuulasmaa T, Paananen J, Jackson AU, Bonnycastle LL, Collins FS, et al. Association of 18 confirmed susceptibility loci for type 2 diabetes with indices of insulin release, proinsulin conversion, and insulin sensitivity in 5,327 nondiabetic Finnish men. Diabetes 2009;58(9):2129-2136. Available from: http://diabetes.diabetesjournals.org/cgi/pmidlookup?view=long&pmid=19502414 PubMed PMID: 19502414. doi: 10.2337/db09-0117.

28. Kendall DM, Riddle MC, Rosenstock J, Zhuang D, Kim DD, Fineman MS, et al. Effects of Exenatide (Exendin-4) on Glycemic Control Over 30 Weeks in Patients With Type 2 Diabetes Treated With Metformin and a Sulfonylurea. Diabetes Care 2005;28(5):1083-1091. Available from: http://care.diabetesjournals.org/cgi/doi/10.2337/diacare.28.5.1083 PubMed PMID: 15855571. doi: 10.2337/diacare.28.5.1083.

29. Staiger H, Machicao F, Fritsche A, Häring H. Pathomechanisms of Type 2 Diabetes Genes. Endocrine Reviews 2009;30(6):557-585. Available from: http://press.endocrine.org/doi/abs/10.1210/er.2009-0017 doi: 10.1210/er.2009-0017.

30. Европейские клинические рекомендации по профилактике сердечно-сосудистых заболеваний (пересмотр 2012г.). Российский кардиологический журнал. 2012; 4(96), приложение 2.[European clinical guidelines for the prevention of cardiovascular disease (revision 2012). Russian Journal of Cardiology 2012;4(suppl 2).]

31. Winocour PH, Fisher M. Prediction of cardiovascular risk in people with diabetes. Diabetic Medicine 2003;20(7):515-527. Available from: http://doi.wiley.com/10.1046/j.1464-5491.2003.00934.x PubMed PMID: 12823231. doi: 10.1046/j.1464-5491.2003.00934.x.

32. Ul Haq I , Ramsay LE, Pickin DM, Yeo WW, Jackson PR, Payne JN. Lipid-lowering for prevention of coronary heart disease: what policy now. Clin Sci (Lond 1996;91(4):399-413.

33. Chamnan P, Simmons RK, Sharp SJ, Griffin SJ, Wareham NJ. Cardiovascular risk assessment scores for people with diabetes: a systematic review. Diabetologia 2009;52(10):2001-2014. Available from: http://link.springer.com/10.1007/s00125-009-1454-0 doi: 10.1007/s00125-009-1454-0.

34. Assmann G. Simple Scoring Scheme for Calculating the Risk of Acute Coronary Events Based on the 10-Year Follow-Up of the Prospective Cardiovascular Munster (PROCAM) Study. Circulation 2002;105(3):310-315. Available from: http://circ.ahajournals.org/cgi/doi/10.1161/hc0302.102575 PubMed PMID: 11804985. doi: 10.1161/hc0302.102575.

35. Donnan PT. Derivation and Validation of a Prediction Score for Major Coronary Heart Disease Events in a U.K. Type 2 Diabetic Population. Diabetes Care 2006;29(6):1231-1236. Available from: http://care.diabetesjournals.org/cgi/doi/10.2337/dc05-1911 doi: 10.2337/dc05-1911.

36. Simmons RK, Coleman RL, Price HC, Holman RR, Khaw KT, Wareham NJ, et al. Performance of the UK Prospective Diabetes Study Risk Engine and the Framingham Risk Equations in Estimating Cardiovascular Disease in the EPIC- Norfolk Cohort. Diabetes Care 2009;32(4):708-713. Available from: http://care.diabetesjournals.org/cgi/doi/10.2337/dc08-1918 PubMed PMID: 19114615. doi: 10.2337/dc08-1918.

37. Kengne AP, Patel A, Marre M, Travert F, Lievre M, Zoungas S, et al. Contemporary model for cardiovascular risk prediction in people with type 2 diabetes. European Journal of Cardiovascular Prevention & Rehabilitation 2011;18(3):393-398. Available from: http://cpr.sagepub.com/lookup/doi/10.1177/1741826710394270 PubMed PMID: 21450612. doi: 10.1177/1741826710394270.

38. Khot UN. Prevalence of Conventional Risk Factors in Patients With Coronary Heart Disease. JAMA 2003;290(7):898-904. Available from: http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.290.7.898 doi: 10.1001/jama.290.7.898.

39. Lluis-Ganella C, Subirana I, Lucas G, Tomás M, Muñoz D, Sentí M, et al. Assessment of the value of a genetic risk score in improving the estimation of coronary risk. Atherosclerosis 2012;222(2):456-463. Available from: http://europepmc.org/abstract/MED/22521901 PubMed PMID: 22521901. doi: 10.1016/j.atherosclerosis.2012.03.024.

40. Ding K, Bailey KR, Kullo IJ. Genotype-informed estimation of risk of coronary heart disease based on genome-wide association data linked to the electronic medical record. BMC Cardiovasc Disord 2011;11(1):66-1186. Available from: http://www.biomedcentral.com/1471-2261/11/66 PubMed PMID: 22151179. doi: 10.1186/1471-2261-11-66.

41. Qi L, Cornelis MC, Zhang C, van Dam RM, Hu FB. Genetic predisposition, Western dietary pattern, and the risk of type 2 diabetes in men. American Journal of Clinical Nutrition 2009;89(5):1453-1458. Available from: http://www.ajcn.org/cgi/doi/10.3945/ajcn.2008.27249 PubMed PMID: 19279076. doi: 10.3945/ajcn.2008.27249.

42. Vassy JL. Can genetic information change patient behavior to reduce Type 2 diabetes risk. Personalized Medicine 2013;10(1):9-12. Available from: http://www.futuremedicine.com/doi/abs/10.2217/pme.12.116 PubMed PMID: 24358047. doi: 10.2217/pme.12.116.

43. Bentley P, Peck G, Smeeth L, Whittaker J, Sharma P. Causal relationship of susceptibility genes to ischemic stroke: comparison to ischemic heart disease and biochemical determinants.. PLoS One 2010;5(2). Available from: http://dx.plos.org/10.1371/journal.pone.0009136 PubMed PMID: 20161734. doi: 10.1371/journal.pone.0009136.


Supplementary files

Review

For citations:


Dedov I.I., Smirnova O.M., Kononenko I.V. Significance of the results of genome-wide association studies for primary prevention of type 2 diabetes mellitus and its complications. Personalised approach. Diabetes mellitus. 2014;17(2):10-19. https://doi.org/10.14341/DM2014210-19

Views: 1706


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)