Preview

Diabetes mellitus

Advanced search

Modern possibilities for using stem cells in diabetes mellitus

https://doi.org/10.14341/DM2014220-28

Abstract

Diabetes mellitus (DM) is characterised by relative or absolute insulin deficiency. The currently available treatment methods for DM cannot provide normal blood glucose level without hypo- or hyperglycaemia episodes, thus failing to completely prevent the development of diabetic complications. Replacement of ?-cells (transplantation of the pancreas or ?-cells) is accompanied by complications and requires life-long immunosuppressive therapy that is not always followed by restoration of insulin independence; there is also a substantial deficit of donors. Stem cells do not cause such negative effects and can be used in therapy to avoid such problems. Allogeneic stem cell transplantation is complicated by immune rejection of a transplant, whereas the use of embryonic stem cells is associated with ethical concerns, complicated cell line selection, and risk of teratoma formation. The present review focuses on therapeutic pathways of autologous transplantation of tissue stem cells in order to restore the ?-cell pool, for immune reconstitution and modulation of the immune response in DM patients.

About the Authors

Ivan Ivanovich Dedov
Endocrinology Research Centre, Moscow
Russian Federation
MD, PhD, Professor, Member of Russian Academy of Sciences, Director of Endocrinology Research Centre (Moscow)
Competing Interests: Автор декларирует отсутствие конфликта интересов, связанных с изложенными в статье данными.


Igor Andreevich Lisukov
Centre for Oncogematology and Transplantology, Northwestern State Medical University named after I.I. Mechnikov, St. Petersburg
Russian Federation
MD, PhD, Professor, Director of Centre for Oncogematology and Transplantology, Northwestern State Medical University named after I.I. Mechnikov, St. Petersburg
Competing Interests: Автор декларирует отсутствие конфликта интересов, связанных с изложенными в статье данными.


Dmitry Nikitich Laptev
Endocrinology Research Centre, Moscow
Russian Federation
MD, PhD, Leading Researcher in Pediatric Endocrinology Institute, Endocrinology Research Centre (Moscow)
Competing Interests:

Автор декларирует отсутствие конфликта интересов, связанных с изложенными в статье данными.



References

1. Дедов ИИ, Шестакова МВ. Сахарный диабет. Руководство для врачей. М; 2003. 455 с.[Dedov II, Shestakova MV. Diabet mellitus. Rukovodstvo dlya vrachey. Moscow; 2003. 455 p.]

2. Vardanyan M, Parkin E, Gruessner C, Rodriguez Rilo HL. Pancreas vs. islet transplantation: a call on the future. Current Opinion in Organ Transplantation 2010;15(1):124-130. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00075200-201002000-00024 doi: 10.1097/MOT.0b013e32833553f8.

3. Kelly WD, Lillehei RC, Merkel FK, Idezuki Y, Goetz FC. Allotransplantation of the pancreas and duodenum along with the kidney in diabetic nephropathy. Surgery 1967;61(6):827-837. Available from: http://ClinicalTrials.gov/search/term=5338113%20%5BPUBMED-IDS%5D PubMed PMID: 5338113.

4. Gruessner AC, Sutherland DE. Pancreas transplant outcomes for United States (US) cases as reported to the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR). Clin Transpl. 2008:45-56.

5. Lauria MW, Figueiró JM, Machado LJC, Sanches MD, Nascimento GF, Lana MQ, et al. Metabolic Long-Term Follow-Up of Functioning Simultaneous Pancreas-Kidney Transplantation Versus Pancreas Transplantation Alone: Insights and Limitations. Transplantation 2010;89(1):83-87. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00007890-201001150-00011 PubMed PMID: 20061923. doi: 10.1097/TP.0b013e3181bd0f83.

6. White SA, Shaw JA, Sutherland DER. Pancreas transplantation. The Lancet 2009;373(9677):1808-1817. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0140673609606097 PubMed PMID: 19465236. doi: 10.1016/S0140-6736(09)60609-7.

7. Scharp DW, Lacy P. Insulin independence after islet transplantation into type 1 diabetic patient. Diabetes 1990;39(4):515-518. Available from: http://www.nlm.nih.gov/medlineplus/diabetestype1.html PubMed PMID: 2108071. doi: 10.2337/diab.39.4.515.

8. Robertson RP. Islet transplantation as a treatment for diabetes - a work in progress. N Engl J Med 2004;350(7):694-705. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMra032425 PubMed PMID: 14960745. doi: 10.1056/NEJMra032425.

9. Zhao Y, Jiang Z, Zhao T, Ye M, Hu C, Yin Z, et al. Reversal of type 1 diabetes via islet β cell regeneration following immune modulation by cord blood-derived multipotent stem cells. BMC Med 2012;10(1):3-10. Available from: http://www.biomedcentral.com/1741-7015/10/3 PubMed PMID: 22233865. doi: 10.1186/1741-7015-10-3.

10. Bonnerweir S. Life and Death of the Pancreatic β Cells. Trends in Endocrinology and Metabolism 2000;11(9):375-378. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1043276000003052 PubMed PMID: 11042468. doi: 10.1016/S1043-2760(00)00305-2.

11. Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 2004;429(6987):41-46. Available from: http://www.nature.com/doifinder/10.1038/nature02520 doi: 10.1038/nature02520.

12. Петеркова ВА, Лаптев ДН. Перспективы терапии, направленной на восстановление пула β-клеток, при сахарном диабете. Сахарный диабет. 2009;(3):6-9. [Peterkova V, Laptev D. Prospects for therapy aimed at restoring the beta-cell pool in patients with diabetes mellitus (review of the literature). Diabetes mellitus 2009; (3):4-9.] Available from: http://endojournals.ru/index.php/dia/article/view/5444 doi: 10.14341/2072-0351-5444.

13. Wang RN, Kloppel G, Bouwens L. Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia 1995;38(12):1405-1411. Available from: http://dx.doi.org/10.1007/BF00400600 PubMed PMID: 8786013. doi: 10.1007/BF00400600.

14. Gmyr V, Kerr-Conte J, Belaich S, Vandewalle B, Leteurtre E, Vantyghem MC, et al. Adult human cytokeratin 19-positive cells reexpress insulin promoter factor 1 in vitro: further evidence for pluripotent pancreatic stem cells in humans. Diabetes 2000;49(10):1671-1680. Available from: http://diabetes.diabetesjournals.org/cgi/doi/10.2337/diabetes.49.10.1671 doi: 10.2337/diabetes.49.10.1671.

15. Furuyama K, Kawaguchi Y, Akiyama H, Horiguchi M, Kodama S, Kuhara T, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet 2011;43(1):34-41. Available from: http://www.nature.com/doifinder/10.1038/ng.722 PubMed PMID: 21113154. doi: 10.1038/ng.722.

16. Solar M, Cardalda C, Houbracken I, Martín M, Maestro MA, De Medts N, et al. Pancreatic Exocrine Duct Cells Give Rise to Insulin-Producing β Cells during Embryogenesis but Not after Birth. Developmental Cell 2009;17(6):849-860. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1534580709004778 doi: 10.1016/j.devcel.2009.11.003.

17. Xu X, D' Hoker J, Stangé G, Bonné S, De Leu N, Xiao X, et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas.. Cell 2008;132(2):197-207. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0092867407016169 PubMed PMID: 18243096. doi: 10.1016/j.cell.2007.12.015.

18. Teta M, Rankin MM, Long SY, Stein GM, Kushner JA. Growth and regeneration of adult beta-cells does not involve specialized progenitors. Developmental Cell 2007;12(5):817-826. Available from: http://linkinghub.elsevier.com/retrieve/pii/S153458070700158X doi: 10.1016/j.devcel.2007.04.011.

19. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126(4):663-676. Available from: https://addgene.org/browse/pubmed/16904174 PubMed PMID: 16904174. doi: 10.1016/j.cell.2006.07.024.

20. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131(5):861-872. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0092867407014717 PubMed PMID: 18035408. doi: 10.1016/j.cell.2007.11.019.

21. Stadtfeld M, Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes & Development 2010;24(20):2239-2263. Available from: http://genesdev.cshlp.org/cgi/doi/10.1101/gad.1963910 PubMed PMID: 20952534. doi: 10.1101/gad.1963910.

22. Tateishi K, He J, Taranova O, Liang G, D' Alessio AC, Zhang Y. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. Journa lof Biological Chemistry 2008;283(46):31601-31607. Available from: http://dx.doi.org/10.1074/jbc.M806597200 doi: 10.1074/jbc.M80659720.

23. Alipio Z, Liao W, Roemer EJ, Waner M, Fink LM, Ward DC, et al. Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic -like cells. Proceedings of the National Academy of Sciences 2010;107(30):13426-13431. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1007884107 doi: 10.1073/pnas.1007884107.

24. Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R, et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proceedings of the National Academy of Sciences 2009;106(37):15768-15773. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0906894106 PubMed PMID: 19720998. doi: 10.1073/pnas.0906894106.

25. Bar-Nur O, Russ HA, Efrat S, Benvenisty N. Epigenetic Memory and Preferential Lineage-Specific Differentiation in Induced Pluripotent Stem Cells Derived from Human Pancreatic Islet Beta Cells. Cell Stem Cell 2011;9(1):17-23. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1934590911002931 PubMed PMID: 21726830. doi: 10.1016/j.stem.2011.06.007.

26. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced Pluripotent Stem Cells Generated Without Viral Integration. Science 2008;322(5903):945-949. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1162494 PubMed PMID: 18818365. doi: 10.1126/science.1162494.

27. Golestaneh N, Kokkinaki M, Pant D, Jiang J, DeStefano D, Fernandez-Bueno C, et al. Pluripotent Stem Cells Derived From Adult Human Testes. Stem Cells and Development 2009;18(8):1115-1125. Available from: http://www.liebertonline.com/doi/abs/10.1089/scd.2008.0347 PubMed PMID: 19281326. doi: 10.1089/scd.2008.0347.

28. Zhu S, Li W, Zhou H, Wei W, Ambasudhan R, Lin T, et al. Reprogramming of Human Primary Somatic Cells by OCT4 and Chemical Compounds. Cell Stem Cell 2010;7(6):651-655. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1934590910006375 doi: 10.1016/j.stem.2010.11.015.

29. Ber I, Shternhall K, Perl S, Ohanuna Z, Goldberg I, Barshack I, et al. Functional, Persistent, and Extended Liver to Pancreas Transdifferentiation. Journal of Biological Chemistry 2003;278(34):31950-31957. Available from: http://www.jbc.org/cgi/doi/10.1074/jbc.M303127200 PubMed PMID: 12775714. doi: 10.1074/jbc.M303127200.

30. Yang L. Liver stem cell-derived β-cell surrogates for treatment of type 1 diabetes. Autoimmunity Reviews 2006;5(6):409-413. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1568997205002090 PubMed PMID: 16890895. doi: 10.1016/j.autrev.2005.10.009.

31. Jones P, Courtney M, Burns C, Persaud S. Cell-based treatments for diabetes. Drug Discovery Today 2008;13(19-20):888-893. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1359644608002407 PubMed PMID: 18652911. doi: 10.1016/j.drudis.2008.06.014.

32. Rocha V, Gluckman E. Improving outcomes of cord blood transplantation: HLA matching, cell dose and other graft- and transplantation-related factors. Br J Haematol 2009;147(2):262-274. Available from: http://www.scholaruniverse.com/ncbi-linkout?id=19796275 PubMed PMID: 19796275. doi: 10.1111/j.1365-2141.2009.07883.x.

33. Haller MJ, Wasserfall CH, Hulme MA, Cintron M, Brusko TM, McGrail KM, et al. Autologous Umbilical Cord Blood Transfusion in Young Children With Type 1 Diabetes Fails to Preserve C-Peptide. Diabetes Care 2011;34(12):2567-2569. Available from: http://care.diabetesjournals.org/cgi/doi/10.2337/dc11-1406 PubMed PMID: 22011412. doi: 10.2337/dc11-1406.

34. Zhao Y. Stem Cell Educator Therapy and Induction of Immune Balance. Curr Diab Rep 2012;12(5):517-523. Available from: http://link.springer.com/10.1007/s11892-012-0308-1 PubMed PMID: 22833322. doi: 10.1007/s11892-012-0308-1.

35. Zhao Y, Huang Z, Lazzarini P, Wang Y, Di A, Chen M. A unique human blood-derived cell population displays high potential for producing insulin. Biochemical and Biophysical Research Communications 2007;360(1):205-211. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006291X07012715 PubMed PMID: 17588534. doi: 10.1016/j.bbrc.2007.06.035.

36. Zhao Y, Wang YH, Mazzone T. Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Exp. Cell Res 2006;312(13):2454-2464. Available from: http://dx.doi.org/10.1016/j.yexcr.2006.04.008 PubMed PMID: 16716296. doi: 10.1016/j.yexcr.2006.04.008.

37. Gaber AO, Fraga D, Kotb M, Lo A, Sabek O, Latif K. Human islet graft function in NOD-SCID mice predicts clinical response in islet transplant recipients. Transplantation Proceedings 2004;36(4):1108-1110. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0041134504004890 PubMed PMID: 15194386. doi: 10.1016/j.transproceed.2004.04.055.

38. Kayali AG. The stromal cell-derived factor-1 /CXCR4 ligand-receptor axis is critical for progenitor survival and migration in the pancreas. The Journal of Cell Biology 2003;163(4):859-869. Available from: http://www.jcb.org/cgi/doi/10.1083/jcb.200304153 doi: 10.1083/jcb.200304153.

39. Tyndall A, Gratwohl A. Blood and marrow stem cell transsplants in auto-immune disease: a consensus report written on behalf of the European League against Rheumatism (EULAR) and the European Group for Blood and Marrow Transplantation (EBMT. Bone Marrow Transplant 1997;19(7):643-645. Available from: http://www.nature.com/doifinder/10.1038/sj.bmt.1700727 doi: 10.1038/sj.bmt.1700727.

40. Openshaw H. High-dose immunosuppression and hematopoietic stem cell transplantation in autoimmune disease: Clinical review. Biology of Blood and Marrow Transplantation 2002;8(5):233-248. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1083879102500331 doi: 10.1053/bbmt.2002.v8.pm12064360.

41. Voltarelli JC, Couri C. Stem cell transplantation for type 1 diabetes mellitus. Diabetol Metab Syndr 2009;1(1):4-4. Available from: http://www.dmsjournal.com/content/1/1/4 doi: 10.1186/1758-5996-1-4.

42. Couri CEB, Oliveira MCB, Stracieri ABPL, Moraes DA, Pieroni F, Barros GMN, et al. C-Peptide Levels and Insulin Independence Following Autologous Nonmyeloablative Hematopoietic Stem Cell Transplantation in Newly Diagnosed Type 1 Diabetes Mellitus. JAMA 2009;301(15):1573-1579. Available from: http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2009.470 PubMed PMID: 19366777. doi: 10.1001/jama.2009.470.

43. Snarski E, Milczarczyk A, Torosian T, Paluszewska M, Urbanowska E, Król M, et al. Independence of exogenous insulin following immunoablation and stem cell reconstitution in newly diagnosed diabetes type I. Bone Marrow Transplant 2011;46(4):562-566. Available from: http://www.nature.com/doifinder/10.1038/bmt.2010.147 PubMed PMID: 20581881. doi: 10.1038/bmt.2010.147.

44. Li L, Shen S, Ouyang J, Hu Y, Hu L, Cui W, et al. Autologous Hematopoietic Stem Cell Transplantation Modulates Immunocompetent Cells and Improves β-Cell Function in Chinese Patients with New Onset of Type 1 Diabetes. The Journal of Clinical Endocrinology & Metabolism 2012;97(5):1729-1736. Available from: http://press.endocrine.org/doi/abs/10.1210/jc.2011-2188 PubMed PMID: 22419704. doi: 10.1210/jc.2011-2188.

45. Hussain MA, Theise ND. Stem-cell therapy for diabetes mellitus.. Lancet 2004;364(9429):203-205. Available from: http://www.nlm.nih.gov/medlineplus/diabetes.html PubMed PMID: 15246735. doi: 10.1016/S0140-6736(04)16635-X.

46. Vats A, Bielby RC, Tolley NS, Nerem R, Polak JM. Stem cells. The Lancet 2005;366(9485):592-602. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0140673605668791 PubMed PMID: 16099296. doi: 10.1016/S0140-6736(05)66879-1.

47. D'Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells.. Nat Biotechnol 2006;24(11):1392-1401. Available from: http://dx.doi.org/10.1038/nbt1259 PubMed PMID: 17053790. doi: 10.1038/nbt1259.

48. Bradley JA, Bolton EM, Pedersen RA. Stem cell medicine encounters the immune system. Nat Rev Immunol 2002;2(11):859-871. Available from: http://www.nlm.nih.gov/medlineplus/immunesystemanddisorders.html PubMed PMID: 12415309. doi: 10.1038/nri934.

49. Melton DA, Daley GQ, Jennings CG. Altered nuclear transfer in stem-cell research—a flawed proposal. N. Engl. J. Med 2004;351:2791-2792. Available from: http://dx.doi.org/10.1056/NEJMp048348 doi: 10.1056/NEJMp048348.

50. Лаптев ДН. Иммунотерапия сахарного диабета 1 типа: современное состояние проблемы и её перспективы. (часть1). Проблемы эндокринологии. 2009;4:24 – 33. [Laptev DN. Immunotherapy for type 1 diabetes: state-of-the-art and prospects. Part 1. Problemy Endokrinologii. 2009;55(4):24-34.] doi: 10.14341/probl200955424-34

51. 50. Лаптев ДН. Иммунотерапия сахарного диабета 1 типа: современное состояние проблемы и её перспективы. (часть 2). Проблемы эндокринологии. 2009;5:31-38.[ Laptev DN. Immunotherapy of type 1 diabetes mellitus: current state-of-the-art and prospects. Part 2. Problemy Endokrinologii. 2009;55(5):31-38.] doi: 10.14341/probl200955531-38


Supplementary files

Review

For citations:


Dedov I.I., Lisukov I.A., Laptev D.N. Modern possibilities for using stem cells in diabetes mellitus. Diabetes mellitus. 2014;17(2):20-28. https://doi.org/10.14341/DM2014220-28

Views: 4293


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)