Preview

Diabetes mellitus

Advanced search

Sovremennye vozmozhnosti farmakoterapii sakharnogo diabeta 2 tipa pri pomoshchi analogov glyukagonopodobnogo peptida-1 (GPP-1)

https://doi.org/10.14341/2072-0351-5908

Abstract

Миметик инкретинов ? экзенатид путем влияния на взаимодействие двух ключевых гормонов, регулирующих гомеостаз глюкозы, ? стимуляции глюкозозависимой секреции инсулина и подавления секреции глюкагона, восстанавливает естественные физиологические механизмы регуляции уровня гликемии. Экзенатид доказал свою высокую эффективность в многочисленных клинических исследованиях и может быть рекомендован для лечения больных СД 2 типа с неудовлетворительным контролем гликемии на пероральной са хароснижающей терапии, в том числе комбинированной.

About the Authors

Marina Vladimirovna Shestakova
Endocrinology Research Centre, Moscow


Olga Konstantinovna Vikulova
Endocrinology Research Centre, Moscow


References

1. La Barre J. Sur les possibilities d'un traitement du diabete par l'incretine. Bull Acad R Med Belg 1932; 12:620-34.

2. La Barre J. Studies on the physiology of secretin. Am J Physiol 1930; 91:649-53.

3. Elrick H, Stimmler L, Hlad CJ, Turner DA. Plasma insulin responses to oral and intravenous glucose administration. J Clin Endocrinol Metab 1964; 24:1076-82.

4. McIntryre N, Holdsworth CD, Turner DA. New interpretation of oral glucose tolerance. Lancet 1964; II: 20-1.

5. Dupre J, Ross SA, Watson D, Brown JC. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 1973; 37:826-8.

6. Schmidt WE, Siegel EG, Creutzfeldt W. Glucagon-like peptide-1 but not glucagon-like peptide-2 stimulates insulin release from isolated rat pancreatic islets. Diabetologia 1985; 28:704-7.

7. Mortensen K, Christensen LL, Holst JJ, Orskov C. GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul Rept 2003; 114:189-96/

8. Holst JJ. GLP-1 receptor agonists for the treatment of diabetes. Int Diabetes Monitor 2005; 17(6):11-8.

9. Eissele R, Goke R, Willemer S et al. Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur J Clin Invest 1992; 22:283-91.

10. Dhanvantari S, Seidah NG, Brubaker PL. Role of prohormone convertases in the tissue-specific processing of proglucagon. Mol Endocinol 1996;10(4):342-55.

11. Dube PE, Brubaker PL. Nutrient, neural and endocrine control of glucagons-like peptide secretion. Horm Metab Res 2004; 36(11- 12):755-60.

12. Mayo KE, Miller LJ, Bataille D et al. International Union of Pharmacology. XXXV. The glucagons receptor family. Pharmacol rev 2003; 55:167-94.

13. Holz GG. Epac: a new cAMP-binding protein in support of glucagonslike peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes 2004; 53: 5-13.

14. Gromada J, Dissing S, Bokvist K, Renstrom E, Frokjaer-Jensen J, Wulff BS, and Rorsman P. Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting beta TC3-cells by enhancement of intracellular calcium mobilization. Diabetes 1995; 44: 767-774.

15. Fehmann HC and Habener JF. Insulinotropic hormone glucagon-like peptide- I(7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocrinology 1992; 130: 159-166.

16. Buteau J, Roduit R, Susini S, Prentki M. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia 1999; 42:856-64.

17. Perfetti R, Zhou J, Doyle ME, and Egan JM. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose- intolerant rats. Endocrinology 2000; 141: 4600-4605.

18. Zhou J, Wang X, Pineyro MA, and Egan JM. Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagons- and insulin-produsing cells. Diabetes 1990, 48: 2358-2366.

19. Li Y, Hansotia T, Yusta B, Ris F, Halban PA, and Drucker DJ. Glucagonlike peptide-1 receptor signaling modulates beta cell apoptosis. J Biol Chem 2003; 278: 471-478.

20. Shah P, Vella A, Rizza RA. Glucagon physiology, pathophysiology and prospects of glucagons antagonists for the treatment of diabetes. Int Diabetes Monitor 2005; 17(6): 3-10.

21. Moore MC, Cherrington AD. Regulation of net hepatic glucose uptake: interaction of neural and pancreatic mechanisms. Reprod Nutr Dev 1996; 36: 399-406.

22. Wettergren A, Schjoldager B, Mortensen PE et al. Truncated GLP-1 (proglucagon 78-107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci 1993; 38: 665-73.

23. Gutzwiller JP, Drewe J, Goke B et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol 1999; 276: R1541-4.

24. Zander M, Madsbad S, Madsen JL, and Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 2002; 359: 824-830.

25. Nauck MA, Homberger E, Siegel EG et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab 1986; 63: 492-8.

26. Nauck MA, Bartels E, _rskov C et al. Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide- 1-(7-36) amide infused at near- physiological insulinotropic hormone and glucose concentrations. J Clin Endocrinol Metab 1993; 76: 912-7.

27. Nauck MA, Heimesaat MM, _rskov C et al. Preserved incretin activity of glucagon-like peptide-1 (7-36 amide) but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993; 91: 301-7.

28. Kjems LL, Holst JJ, Volund A, Madsbad S. The influence of GLP-1 on glucose- stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 2003; 52: 380-6.

29. Vilsbol T, Krarup T, Madsbad S, Holst JJ. Defective amplification of the late phase insulin response to glucose by GIP in obese Type II diabetic patients. Diabetologia 2002; 45: 1111-9.

30. Deacon CF, Johnsen AH, Holst JJ. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab 1995; 80: 952-7.

31. Nielsen LL, Young AA, Parkers DG. Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved glycemic control of type 2 diabetes. Regul Rept 2004; 117: 77-88.

32. gan JM, Clocquet AR, Elahi D. The insulinotropic effect of acute exendin-4 administered to humans: comparison of nondiabetic state to type 2 diabetes. J Clin Endocrinol Metab 2002; 87(3): 1282-90.

33. Degn KB, Brock B, Juhl CB et al. Effect of intravenous infusion of exenatide (synthetic exendin-4) on glucose-dependent insulin secretion and couterregulation during hypoglycemia. Diabetes 2004; 53(9): 2397-403.

34. Fehse FC, Trautmann ME, Holst JJ, Halseth AE et al. Exenatide augments first- and second-phase insulin secretion in response to intravenous glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab 2005; 90: 5991-5997.

35. Kolterman OG, Buse JB, Fineman MS, Gaines E et al. Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab 2003; 88: 3082-3089.

36. Kolterman O, Kim DD, Shen L, Ruggles JA et al. Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am J Health Syst Pharm 2005; 62: 173-181.

37. Edwards CMB, Stanley SA, Davis R et al. Exendin-4 reduses fasting and postprandial glucose decreases energy intake in healthy volunteers. Am J Physiol Endocrinol Metab 2001; 281(1): E155-61.2.

38. Fineman MS, Bicsak TA, Shen LZ, et al. Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with type 2 diabetes. Diabetes Care 2003; 26(8): 2370-7.

39. Poon T, Nelson P, Shen L et al. Exenatide improves glycemic control and reduces body weight in subjects with type 2 diabetes: a dose-ranging study. Diabetes Technol Ther 2005; 7(3): 467-77.

40. DeFronzo R, Ratner R, Han J et al. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 2005; 28(5): 1092-100.

41. Buse J, Henry R, Han J et al. Effests of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 2004; 27(11): 2628-35.

42. Kendall DM, Riddle MC, Rosenstock J et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 2005; 28(5):1083-91.

43. Ratner RE, Maggs D, Nielsen LL, Stonehouse AH et al. Long term effects of exenatide therapy over 82 weeks on glycemic control and weight in over-weigt metformin-treated patients with type 2 diabetes mellitus. Diabetes Obes Metab 2006; In Press.

44. Kim D, Trautmann ME, Limmer J et al. Exenatide reduzierte HbA1c und gewicht uber 82 wochen bei patienten mit typ-2 diabetes [abstract no. V-20]. Diabetes Stoffwechsel 2005; 14(1): 10.

45. Kim D, Trautmann ME, Schonamsqruber E et al. Exenatide reduzierte HbA1c und gewicht uber 82 wochen bei mit metformin und sulfonylharnstoff behandelten patienten mit typ-2 diabetes [abstract no.P-349]. Diabetes Stoffwechsel 2005; 14(1): 161.

46. Kendall DM, Kim D, Poon T et al. Improvements in cardiovascular risk factors accompanied sustained effects on glycemia and weight reduction in patients with type 2 diabetes treated with exenatide for 82 wk [abstract no.16-OR]. Diabetes 2005; 54(1):A4-5.

47. Heine RJ, Van Gaal LF, Johns D, Mihm M, et al. Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes. Ann Intern Med. 2005; 143(8):559-569.

48. Fineman MS, Shen LZ, Taylor K, Kim DD, Baron AD. Effectiveness of progressive dose-escalation of exenatide (exendin-4) in reducing dose-limiting effects in subjects with type 2 diabetes. Diabetes Metab Res Rev 2004; 20:411-417.

49. Maggs D, Kim D, Holcombe J, et al. Exenatide induced reduction in A1C and body weight in long-term trials are not explained by gastrointestinal side effects [abstract no.485-P]. Diabetes 2005; 54(1): A120.


Review

For citations:


Shestakova M.V., Vikulova O.K. Sovremennye vozmozhnosti farmakoterapii sakharnogo diabeta 2 tipa pri pomoshchi analogov glyukagonopodobnogo peptida-1 (GPP-1). Diabetes mellitus. 2007;10(1):9-15. (In Russ.) https://doi.org/10.14341/2072-0351-5908

Views: 2952


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)