Preview

Diabetes mellitus

Advanced search

Clinical and genetic heterogeneity of neonatal diabetes mellitus (review of the literature)

https://doi.org/10.14341/2072-0351-5445

Abstract

Diabetes mellitus detected within the first 6 months of life is termed neonatal diabetes. Two its forms, permanent and transient, differ in the durationof insulin dependence. The review contains data on mechanisms underlying this pathology and its specific clinical features.

About the Authors

Tamara Leonidovna Kuraeva
Endocrinology Research Centre, Moscow


Andrey Olegovich Emel'yanov
Endocrinology Research Centre, Moscow


References

1. Shield J.P. Neonatal diabetes //Horm Res 2007 68(Suppl 5): P. 32-36.

2. Hutchinson J.H., Keay A.J., Kerr M.M. 1962 Congenital temporary diabetes mellitus. BMJ 2: P. 436-440.

3. Aguilar-Bryan L., Bryan J. Neonatal Diabetes Mellitus //Endocrine Review, 2008 s 29(3): P. 265-291.

4. Ong K.K., Dunger D.B. 2004 Birth weight, infant growth and insulin resistance //Eur. J. Endocrinol 151(Suppl 3): P. U131-U139.

5. Saenger P., Czernichow P., Hughes I., Reiter EO 2007 Small for gestational age: short stature and beyond. Endocr Rev 28: P. 219-251.

6. Fagerberg B., Bondjers L., Nilsson P. 2004 Low birth weight in combination with catch-up growth predicts the occurrence of the metabolic syndrome inmen at late middle age: the Atherosclerosis and Insulin Resistance study //J. Intern. Med. 256: P. 254-259.

7. Cianfarani S., Germani D., Branca F. 1999 Low birthweight and adult insulin resistance: the "catch-up growth" hypothesis //Arch. Dis. Child. Fetal Neonatal Ed. 81: P. F71-F73.

8. Kamoda T., Nozue H., Matsui A. 2007 Serum levels of adiponectin and IGFBP-1 in short children born small for gestational age //Clin. Endocrinol (Oxf) 66: P. 290-294.

9. Evagelidou E.N., Giapros V.I., Challa A.S., Kiortsis D.N., Tsatsoulis A.A., Andronikou S.K. 2007 Serum adiponectin levels, insulin resistance, and lipid profile in children born small for gestational age are affected by the severity of growth retardation at birth //Eur. J. Endocrinol 156: P. 271-277.

10. Valerio G., Franzese A., Salerno M., Muzzi G., Cecere G., Temple K.I., Shield J.P. 2004 β-Cell dysfunction in classic transient neonatal diabetes is characterized by impaired insulin response to glucose but normal response to glucagon //Diabetes Care 27: P. 2405-2408.

11. Skupien J., Malecki M.T., Mlynarski W., Klupa T., Wanic K., Gach A., Solecka I., Sieradzki J. 2006 Assessment of insulin sensitivity in adults with permanent neonatal diabetes mellitus due to mutations in the KCNJ11 gene encoding Kir6.2 //Rev Diabet Stud 3: P. 17-20.

12. Malecki M.T., Skupien J., Klupa T., Wanic K., Mlynarski W., Gach A., Solecka I., Sieradzki J. 2007 Transfer to sulphonylurea therapy in adult subjects with permanent neonatal diabetes due to KCNJ11-activating mutations: evidence for improvement in insulin sensitivity //Diabetes Care 30: P. 147-149.

13. Chutkow W.A., Samuel V., Hansen P.A., Pu J., Valdivia C.R., Makielski J.C., Burant CF 2001 Disruption of Sur2-containing KATP channels enhances insulin- stimulated glucose uptake in skeletal muscle. Proc Natl Acad Sci USA 98: P. 11760-11764.

14. Miki T., Minami K., Zhang L., Morita M., Gonoi T., Shiuchi T., Minokoshi Y., Renaud J.M., Seino S. 2002 ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue //Am. J. Physiol. Endocrinol Metab. 283: P. E1178-E1184.

15. Дедов И.И., Кураева Т.Л., Петеркова В.А., Щербачева Л.Н. Сахар- ный диабет у детей и подростков. М., Универсум Паблишинг. - 2002. - 391с.

16. Дедов И.И., Петеркова В.А., Ремизов О.В. и др. //Сахарный диабет, 2002, 2, С. 24-27.

17. Temple I.K., Shield J.P. 2002 Transient neonatal diabetes, a disorder of imprinting //J. Med. Genet. 39: P. 872-875.

18. Polak M., Cave H. 2007 Neonatal diabetes mellitus: a disease linked to multiple mechanisms. Orphanet J Rare Dis 2:12 18. Polak M., Shield J. 2004 Neonatal diabetes mellitus-genetic aspects 2004 //Pediatr. Endocrinol. Rev. 2: P. 193-198.

19. Yorifuji T., Kurokawa K., Mamada M., Imai T., Kawai M., Nishi Y., Shishido S., Hasegawa Y., Nakahata T. 2004 Neonatal diabetes mellitus and neonatal polycystic, dysplastic kidneys: phenotypically discordant recurrence of a mutation in the hepatocyte nuclear factor-1_ gene due to germline mosaicism //J. Clin. Endocrinol. Metab. 89: P. 2905-2908.

20. Iafusco D., Stazi M.A., Cotichini R., Cotellessa M., Martinucci M.E., Mazzella M., Cherubini V., Barbetti F., Martinetti M., Cerutti F., Prisco F. 2002 Permanent diabetes mellitus in the first year of life //Diabetologia 45: P. 798-804.

21. Polak M., Shield .J 2004 Neonatal and very-early-onset diabetes mellitus //Semin Neonatol 9: P. 59-65.

22. Njolstad P.R., Sovik O., Cuesta-Munoz A., Bjorkhaug L., Massa O., Barbetti F., Undlien D.E., Shiota C., Magnuson M.A., Molven A., Matschinsky F.M., Bell G.I. 2001 Neonatal diabetes mellitus due to complete glucokinase deficiency //N. Engl. J. Med. 344: P. 1588-1592.

23. Shield J.P., Gardner R.J., Wadsworth E.J., Whiteford M.L., James R.S., Robinson D.O., Baum J.D., Temple I.K. 1997 Aetiopathology and genetic basis of neonatal diabetes //Arch. Dis. Child. Fetal. Neonatal. Ed. 76: P. 39-42.

24. Stoy J., Edghill E.L., Flanagan S.E., Ye H., Paz V.P., Pluzhnikov A., Below J.E., Hayes M.G., Cox N.J., Lipkind G.M., Lipton R.B., Greeley S.A., Patch A.M., Ellard S., Steiner D.F., Hattersley A.T., Philipson L.H., Bell G.I. 2007 Insulin gene mutations as a cause of permanent neonatal diabetes //Proc Natl Acad Sci USA 104: P. 15040-15044.

25. Ramsey W.R. 1926 Glycosuria of the newborn treated with insulin //Trans Am Pediatr Soc 38: P. 100-101.

26. Gloyn A.L., Pearson E.R., Antcliff J.F., Proks P., Bruining G.J., Slingerland A.S., Howard N., Srinivasan S., Silva J.M., Molnes J., Edghill E.L., Frayling T.M., Temple I.K., Mackay D., Shield J.P., Sumnik Z., van Rhijn A., Wales J.K., Clark P., Gorman S., Aisenberg J., Ellard S., Njolstad P.R., Ashcroft F.M., Hattersley A.T. 2004 Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes //N. Engl. J. Med. 350: P. 1838-1849.

27. Thomas P.M., Ye Y., Lightner E. Mutation of the pancreatic islet inward rectifier, Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy //Hum. Mol. Genet. 1996;5: P. 1809-1812.

28. Hattersley A.T., Ashcroft F.M. 2005 Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy //Diabetes 54: P. 2503-2513.

29. Koster J.C., Cadario F., Peruzzi C., Colombo C., Nichols C.G., Barbetti F. 2008 The G53D mutation in Kir6.2 (KCNJ11) is associated with neonatal diabetes and motor dysfunction in adulthood that is improved with sulfonylurea therapy //J. Clin. Endocrinol. Metab. 93: P. 1054-1061.

30. Gloyn A.L., Reimann F., Girard C., Edghill E.L., Proks P., Pearson E.R., Temple I.K., Mackay D.J., Shield J.P., Freedenberg D., Noyes K., Ellard S., Ashcroft F.M., Gribble F.M., Hattersley A.T. 2005 Relapsing diabetes can result from moderately activating mutations in KCNJ11 //Hum. Mol. Genet. 14: P. 925-934.

31. Babenko A.P., Polak M., Cave H., Busiah K., Czernichow P., Scharfmann R., Bryan J., Aguilar-Bryan L., Vaxillaire M., Froguel P. 2006 Activating mutations in the ABCC8 gene in neonatal diabetes mellitus //N. Engl. J. Med. 355: P. 456-466.

32. Proks P., Arnold A.L., Bruining J., Girard C., Flanagan S.E., Larkin B., Colclough K., Hattersley A.T., Ashcroft F.M., Ellard S. 2006 A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes //Hum. Mol. Genet. 15: P. 1793-1800.

33. Stoy J., Greeley S.A., Paz V.P., Ye H., Pastore A.N., Skowron K.B., Lipton R.B., Cogen F.R., Bell G.I., Philipson L.H.; United States Neonatal Diabetes Working Group. Diagnosis and treatment of neonatal diabetes: a United States experience //Pediatr Diabetes. 2008 Oct; 9(5): P. 450-459.

34. Flanagan S.E., Edghill E.L., Gloyn A.L., Ellard S., Hattersley A.T. 2006 Mutations in KCNJ11, which encodes Kir6.2, are a common cause of diabetes diagnosed in the first 6 months of life, with the phenotype determined by genotype //Diabetologia 49: P. 1190-1197.

35. Flanagan S.E., Patch A.M., Mackay D.J., Edghill E.L., Gloyn A.L., Robinson D., Shield J.P., Temple K., Ellard S., Hattersley A.T. 2007 Mutations in ATP-sensitive K_ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood //Diabetes 56: P. 1930-1937.

36. Powell B.R., Buist N.R., Stenzel P. 1982 An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy //J. Pediatr. 100: P. 731-737.

37. Bennett C.L., Yoshioka R., Kiyosawa H., Barker D.F., Fain P.R., Shigeoka A.O., Chance P.F. 2000 X-Linked syndrome of polyendocrinopathy, immune dysfunction, and diarrhea maps to Xp11.23-Xq13.3 //Am. J Hum. Genet. 66: P. 461-468.

38. Schubert L.A., Jeffery E., Zhang Y., Ramsdell F., Ziegler S.F. 2001 Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation //J. Biol. Chem. 276: Р. 37672-37679.

39. Wolcott C.D., Rallison M.L. 1972 Infancy-onset diabetes mellitus and multiple epiphyseal dysplasia //J. Pediatr 80: P. 292-297.

40. Stoss H., Pesch H.J., Pontz B., Otten A., Spranger J. 1982 Wolcott-Rallison syndrome: diabetes mellitus and spondyloepiphyseal dysplasia //Eur. J. Pediatr. 138: P. 120-129.

41. Stewart F.J., Carson D.J., Thomas P.S., Humphreys M., Thornton C., Nevin N.C. 1996 Wolcott-Rallison syndrome associated with congenital malformations and a mosaic deletion 15q 11-12 //Clin. Genet. 49: P. 152-155.

42. Thornton C.M., Carson D.J., Stewart F.J. 1997 Autopsy findings in the Wolcott-Rallison syndrome //Pediatr Pathol Lab Med 17: P. 487-496.

43. Senee V., Vattem K.M., Delepine M., Rainbow L.A., Haton C., Lecoq A., Shaw N.J., Robert J.J., Rooman R., Diatloff-Zito C., Michaud J.L., Bin-Abbas B., Taha D., Zabel B., Franceschini P., Topaloglu A.K., Lathrop G.M., Barrett T.G., Nicolino M., Wek R.C., Julier C. 2004 Wolcott- Rallison syndrome: clinical, genetic, and functional study of EIF2AK3 mutations and suggestion of genetic heterogeneity //Diabetes 53: P. 1876-1883.

44. Hoveyda N., Shield J.P., Garrett C., Chong W.K., Beardsall K., Bentsi-Enchill E., Mallya H., Thompson M.H. Neonatal diabetes mellitus and cerebellar hypoplasia/agenesis: report of a new recessive syndrome //J. Med. Genet. 1999, 36: P. 700-704.

45. Sellick G.S., Barker K.T., Stolte-Dijkstra I., Fleischmann C., Coleman R.J., Garrett C., Gloyn A.L., Edghill E.L., Hattersley A.T., Wellauer P.K., Goodwin G., Houlston R.S. 2004 Mutations in PTF1A cause pancreatic and cerebellar agenesis //Nat. Genet. 36: P. 1301-1305.

46. Ohlsson H., Karlsson K., Edlund T. 1993 IPF1, a homeodomaincontaining transactivator of the insulin gene //EMBO J. 12: P. 4251-4259.

47. Stoffers D.A., Zinkin N.T., Stanojevic V., Clarke W.L., Habener J.F. 1997 Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence //Nat. Genet. 15: P. 106-110.


Review

For citations:


Kuraeva T.L., Emel'yanov A.O. Clinical and genetic heterogeneity of neonatal diabetes mellitus (review of the literature). Diabetes mellitus. 2009;12(3):10-15. (In Russ.) https://doi.org/10.14341/2072-0351-5445

Views: 1306


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)