Preview

Diabetes mellitus

Advanced search

PTPN22 polymorphisms associated with type 1 diabetes mellitus in ethnic populations of Russian Federation

https://doi.org/10.14341/2072-0351-3750

Abstract

Aim.
To evaluate the association of rs2476601 and rs2488457 polymorphisms with type 1 diabetes mellitus (T1DM) in several ethnic populations of Russian Federation and to estimate the cross-populational differences of these polymorphisms.
Materials and Methods.
A case-control design was applied to study the aforementioned polymorphisms in five ethnic populations of Russian Federation: Bashkir, Yakut, Buryat, Udmurt, Russian. We analyzed DNA samples from 491 patients with T1DM and 408 control subjects. Polymorphisms were identified with RFLP-PCR and RT-PCR. Strength of association was evaluated as odds ratio (OR). All calculations were performed with StatSoft STATISTICA (version 6) and Microsoft Excel 2003 software applications.
Results.
PTPN22 1858Т+ genotypes were associated with T1DM in Udmurt, Russian and Bashkir populations and PTPN22 1123C+ genotype in Buryat population. We did not find any associations of PTPN22 gene polymorphisms with T1DM in Yakut population. Cross-ethnic comparison of polymorphism frequencies showed statistically significant differences. Allele frequency distribution in Buryat population significantly differs from that of other studied ethnic groups with G-1123C (rs2488457; 71.3%) being a significantly more common finding than C type allele. Russian population of Moscow and Moscow Region is also characterized by higher prevalence of Ttype allele (13%) in C1858Т (rs2476601) polymorphism.
Conclusion.
Ethnic populations of Asian regions of Russian Federation, characterized by lower rates of T1DM (Yakut and Buryat) demonstrated highest prevalence of G-allele in G-1123C (rs2488457) polymorphism. On the contrary, analyses from Russian population of Moscow and Moscow Region, known to have higher rates of T1DM, suggest higher prevalence of T-allele in C1858Т (rs2476601) polymorphism.

About the Authors

O N Ivanova
Endocrinology Research Centre, Moscow

k.b.n., v.n.s. laboratorii genetiki i klinicheskoy immunologii



Sergey Alexandrovich Prokof'ev
Endocrinology Research Centre, Moscow

k.b.n., v.n.s. laboratorii genetiki i klinicheskoy immunologii



Natalia Borisovna Smirnova
Endocrinology Research Centre, Moscow

k.b.n., v.n.s. laboratorii genetiki i klinicheskoy immunologii



Yulia Vladimirovna Tishina
Endocrinology Research Centre, Moscow

n.s. laboratorii genetiki i klinicheskoy immunologii



Tatiana Prokop'evna Bardymova
2 Irkutsk State Medical Academy of Postgraduate Studies, Irkutsk

d.m.n, prof., zav. kafedroy endokrinologii



G I Danilova
Yakutsk Republican Hospital №1, Yakutsk

k.m.n., glavnyy detskiy endokrinolog MZ Respubliki Sakha-Yakutii



T V Kovalenko
Izhevsk State Medical Academy, Izhevsk

d.m.n., zav. kafedroy pediatrii



Elena Vital'evna Titovich
Endocrinology Research Centre, Moscow

k.m.n., v.n.s. Instituta detskoy endokrinologii



Tamara Leonidovna Kuraeva
Endocrinology Research Centre, Moscow

prof., d.m.n., zav. otdeleniem diabeta Instituta detskoy endokrinologii



Valentina Alexandrovna Peterkova
Endocrinology Research Centre, Moscow

chlen-korr. RAMN, prof., direktor Instituta detskoy endokrinologii



Ivan Ivanovich Dedov
Endocrinology Research Centre, Moscow

akademik RAN i RAMN, direktor



References

1. Mustelin T, Abraham RT, Rudd CE, Alonso A, Merlo JJ. Protein tyrosine phosphorylation in T cell signaling. Front Biosci. 2002 Apr 1;7:d918–969.

2. Palacios EH, Weiss A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene. 2004 Oct 18;23(48):7990–8000.

3. Mustelin T, Tasken K. Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem J. 2003 Apr 1;371(Pt 1):15–27.

4. Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, MacMurray J, Meloni GF, Lucarelli P, Pellecchia M Eisenbarth GS, Comings D, Mustelin T. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet. 2004 Apr;36(4):337–338.

5. The Wellcome Trust Case Control Consortium. Genomewide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls. Nature. 2007 Jun 7;447(7145):661–678.

6. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, Bailey R, Nejentsev S, Field SF, Payne F, Lowe CE, Szeszko JS, Hafler JP, Zeitels L, Yang JH, Vella A, Nutland S, Stevens HE, Schuilenburg H, Coleman G, Maisuria M, Meadows W, Smink LJ, Healy B, Burren OS, Lam AA, Ovington NR, Allen J, Adlem E, Leung HT, Wallace C, Howson JM, Guja C, Ionescu-Tîrgovişte C; Genetics of Type 1 Diabetes in Finland, Simmonds MJ, Heward JM, Gough SC, Wellcome Trust Case Control Consortium, Dunger DB, Wicker LS, Clayton DG. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet. 2007 Jul;39(7):857–864.

7. Hennig BJ, Fry AE, Hirai K, Tahara H, Tamori A, Moller M, Hopkin J, Hill AV, Bodmer W, Beverley P, Tchilian E. PTPRC (CD45) variation and disease association stud- ied using single nucleotide polymorphism tagging. Tis- sue Antigens. 2008 May;71(5):458–463. DOI: http://dx.doi.org/10.1111/j.1399-0039.2008.01014.x

8. Julia A, Ballina J, Canete JD, Balsa A, Tornero-Molina J, Naranjo A, Alperi-López M, Erra A, Pascual-Salcedo D, Barceló P, Camps J, Marsal S. Genome-wide association study of rheumatoid arthritis in the Spanish population: KLF12 as a risk locus for rheumatoid arthritis susceptibility. Arthritis Rheum. 2008 Aug;58(8):2275–2286. DOI: http://dx.doi.org/10.1002/art.23623

9. Concannon P, Onengut-Gumuscu S, Todd JA, Smyth DJ, Pociot F, Bergholdt R, Akolkar B, Erlich HA, Hilner JE, Julier C, Morahan G, Nerup J, Nierras CR, Chen WM, Rich SS; Type 1 Diabetes Genetics Consortium. A human type 1 diabetes susceptibility locus maps to chromosome 21q22.3. Diabetes. 2008 Oct;57(10):2858– 2861. DOI: http://dx.doi.org/10.2337/db08-0753

10. Raychaudhuri S, Thomson BP, Remmers EF, Eyre S, Hinks A, Guiducci C, Catanese JJ, Xie G, Stahl EA, Chen R, Alfredsson L, Amos CI, Ardlie KG; BIRAC Consortium, Barton A, Bowes J, Burtt NP, Chang M, Coblyn J, Costenbader KH, Criswell LA, Crusius JB, Cui J, De Jager PL, Ding B, Emery P, Flynn E, Harrison P, Hocking LJ, Huizinga TW, Kastner DL, Ke X, Kurreeman FA, Lee AT, Liu X, Li Y, Martin P, Morgan AW, Padyukov L, Reid DM, Seielstad M, Seldin MF, Shadick NA, Steer S, Tak PP, Thomson W, van der Helm-van Mil AH, van der Horst-Bruinsma IE, Weinblatt ME, Wilson AG, Wolbink GJ, Wordsworth P; YEAR Consortium, Altshuler D, Karlson EW, Toes RE, de Vries N, Begovich AB, Siminovitch KA, Worthington J, Klareskog L, Gregersen PK, Daly MJ, Plenge RM. Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis risk. Nat Genet. 2009 Dec;41(12):1313–1318. DOI: http://dx.doi.org/10.1038/ng.479

11. Pociot F, Akolkar B, Concannon P, Erlich HA, Julier C, Morahan G, Nierras CR, Todd JA, Rich SS, Nerup J. Genetics of type diabetes: What’s next? Diabetes. 2010 Jul;59(7):1561– 1571. DOI: http://dx.doi.org/10.2337/db10-0076

12. Cohen S, Dadi H, Shaoul E, Sharfe N, Roifman CM. Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase, Lyp. Blood. 1999 Mar 15;93(6):2013–2024.

13. Liu Y, Stanford SM, Jog SP, Fiorillo E, Orru V, et al. Regulation of lymphoid tyrosine phosphatase activity: inhibition of the catalytic domain by the proximal interdomain. Biochemistry. 2009 Aug 11;48(31):7525–7532. DOI: http://dx.doi.org/10.1021/bi900332f

14. Chang HH, Tai TS, Lu B, Iannaccone C, Cernadas M, Weinblatt M, Shadick N, Miaw SC, Ho IC. PTPN22.6, a Dominant Negative Isoform of PTPN22 and Potential Biomarker of Rheumatoid Arthritis/ PLoS One. 2012;7(3):e33067. DOI: http://dx.doi.org/10.1371/journal.pone.0033067

15. Orrú V, Tsai SJ, Rueda B, Fiorillo E, Stanford SM, Dasgupta J, Hartiala J, Zhao L, Ortego-Centeno N, D'Alfonso S; Italian Collaborative Group, Arnett FC, Wu H, Gonzalez-Gay MA, Tsao BP, Pons-Estel B, Alarcon-Riquelme ME, He Y, Zhang ZY, Allayee H, Chen XS, Martin J, Bottini N. A loss-of-function variant of PTPN22 is associated with reduced risk of systemic lupus erythematosus. Hum Mol Genet. 2009 Feb 1;18(3):569–579. DOI: http://dx.doi.org/10.1093/hmg/ddn363

16. Skinningsrud B, Husebye ES, Gervin K, Lovas K, Blomhoff A, Wolff, AB, Kemp EH, Egeland T, and Undlien DE. Mutation screening of PTPN22: association of the 1858T-allele with Addison’s disease. Eur J Hum Genet. 2008 Aug;16(8):977–982. DOI: http://dx.doi.org/10.1038/ejhg.2008.33

17. Zoledziewska M, Perra C, Orrù V, Moi L, Frongia P, Congia M, Bottini N, Cucca F. Further evidence of a primary, causal as- sociation of the PTPN22 620W variant with type 1 diabetes. Diabetes. 2008 Jan;57(1):229–234.

18. Smyth D, Cooper JD, Collins JE, Heward JM, Franklyn JA, Howson JM, Vella A, Nutland S, Rance HE, Maier L, Barratt BJ, Guja C, Ionescu-Tîrgoviste C, Savage DA, Dunger DB, Widmer B, Strachan DP, Ring SM, Walker N, Clayton DG, Twells RC, Gough SC, Todd JA. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type diabetes, and evidence for its role as a general autoimmunity locus. Diabetes. 2004 Nov;53(11):3020–2023.

19. Zheng W, She JX. Genetic association between a lymphoid tyrosine phosphatase (PTPN22) and type 1 diabetes. Diabetes. 2005 Mar;54(3):906–908.

20. Zhernakova A, Eerligh P, Wijmenga C, Barrera P, Roep BO, Koeleman BP. Differential association of the PTPN22 coding variant with autoimmune diseases in a Dutch population. Genes Immun. 2005 Sep;6(6):459–461.

21. Kahles H, Ramos-Lopez E, Lange B, Zwermann O, Reincke M, Badenhoop K. Sex-specific association of PTPN22 1858T with type 1 diabetes but not with Hashimoto’s thyroiditis or Addison’s disease in the German population. Eur J Endocrinol. 2005 Dec;153(6):895–899.

22. Kawasaki E, Awata T, Ikegami H, Kobayashi T, Maruyama T, Nakanishi K, Shimada A, Uga M, Kurihara S, Kawabata Y, Tanaka S, Kanazawa Y, Lee I, Eguchi K. Systematic search for single nucleotide polymorphisms in a lymphoid tyrosine phosphatase gene (PTPN22): association between a promoter polymorphism and type 1 diabetes in Asian populations. Am J Med Genet A. 2006 Mar 15;140(6):586–593.

23. Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC, Ardlie KG, Huang Q, Smith AM, Spoerke JM, Conn MT, Chang M, Chang SY, Saiki RK, Catanese JJ, Leong DU, Garcia VE, McAllister LB, Jeffery DA, Lee AT, Batliwalla F, Remmers E, Criswell LA, Seldin MF, Kastner DL, Amos CI, Sninsky JJ, Gregersen PK. A Missense Single-Nucleotide Polymorphism in a Gene Encoding a Protein Tyrosine Phosphatase (PTPN22) Is Associated with Rheumatoid Arthritis. Am J Hum Genet. 2004 Aug;75(2):330–337.

24. Cloutier JF, Veillette A. Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J Exp Med. 1999 Jan 4;189(1):111–121.

25. Zhang J, Zahir N, Jiang Q, Miliotis H, Heyraud S, Meng X, Dong B, Xie G, Qiu F, Hao Z, McCulloch CA, Keystone EC, Peterson AC, Siminovitch KA. The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nat Genet. 2011 Aug 14;43(9):902–907. DOI: http://dx.doi.org/10.1038/ng.904

26. Rieck M, Arechiga A, Onengut-Gumuscu S, Greenbaum C, Concannon P, Buckner JH. Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. J Immunol. 2007 Oct 1;179(7):4704–4710.

27. Vang T, Congia M, Macis MD, Musumeci L, Orrú V, Zavattari P, Nika K, Tautz L, Taskén K, Cucca F, Mustelin T, Bottini N. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-offunction variant. Nat Genet. 2005 Dec;37(12):1317–1319.

28. Ronninger M, Guo Y, Shchetynsky K, Hill A, Khademi M, Olsson T, Reddy PS, Seddighzadeh M, Clark JD, Lin LL, O'Toole M, Padyukov L. The balance of expression of PTPN22 splice forms is significantly different in rheumatoid arthritis patients compared with controls. Genome Med. 2012 Jan 20;4(1):2. DOI: http://dx.doi.org/10.1186/gm301

29. Diaz-Gallo LM, Martin J. PTPN22 splice forms: a new role in rheumatoid arthritis. Genome Med. 2012 Feb 24;4(2):13. DOI: http://dx.doi.org/10.1186/gm312

30. Hu YF, Lüscher B, Admon A, Mermod N, Tjian R. Transcription factor AP-4 contains multiple dimerization domains that regulate dimer specificity. Genes Dev. 1990 Oct;4(10):1741–1752.

31. Liu F, Liu J, Zheng TS, Li Q, Wang C, Pan XP, Lu H, Zhao YW. The -1123G>C variant of PTPN22 gene promoter is associated with latent autoimmune diabetes in adult Chinese Hans. Cell Biochem Biophys. 2012 Mar;62(2):273–279. DOI: http://dx.doi.org/10.1007/s12013-011-9291-4

32. Huang JJ, Qiu YR, Li HX, Sun DH, Yang J, Yang CL. A PTPN22 promoter polymorphism -1123G>C is associated with RA pathogenesis in Chinese. Rheumatol Int. 2012 Mar;32(3):767–771. DOI: http://dx.doi.org/10.1007/s00296-010-1705-x

33. Lempainen J, Vaarala O, Mäkelä M, Veijola R, Simell O, Knip M, Hermann R, Ilonen J. Interplay between PTPN22 C1858T polymorphism and cow's milk formula exposure in type diabetes. J Autoimmun. 2009 Sep;33(2):155–164. DOI: http://dx.doi.org/10.1016/j.jaut.2009.04.003

34. Woolf B. On estimating the relation between blood group and disease. Ann Hum Genet. 1955 Jun;19(4):251–253.

35. Абрамов Д.Д. Исследование ассоциации полиморфизма ряда генов-кандидатов с развитием сахарного диабета типа. Автореферат на соискание ученой степени кандидата биологических наук. Москва, 2008.

36. Абрамов Д.Д., Трофимов Д.Ю., Алексеев Л.П. Полиморфизм гена PTPN22 (1858C/T) в русской популяции у больных са- харным диабетом 1 типа и здоровых доноров. Медицинская иммунология. 2007; 9(2–3):190.

37. Totaro MC, Tolusso B, Napolioni V, Faustini F, Canestri S, Mannocci A, Gremese E, Bosello SL, Alivernini S, Ferraccioli G. PTPN22 1858C/T polymorphism distribution in Europe and association with rheumatoid arthritis: case-control study and meta-analysis. PLoS One. 2011;6(9):e24292. DOI: http://dx.doi.org/10.1371/journal.pone.0024292

38. Коваленко Т.В., Блинов А.В., Кураева Т.Л. Эпидемиология сахарного диабета 1 типа у детей и подростков в Удмуртской Республике. Сахарный диабет. 2006;(2):8–10.

39. Дедов И.И., Колесникова Л.И., Бардымова Т.П., Прокофьев С.А., Иванова О.Н. Клинические, генетические и метаболические особенности сахарного диабета у больных бурятской популяции. Сахарный диабет. 2006;(3):2–5.


Review

For citations:


Ivanova O.N., Prokof'ev S.A., Smirnova N.B., Tishina Yu.V., Bardymova T.P., Danilova G.I., Kovalenko T.V., Titovich E.V., Kuraeva T.L., Peterkova V.A., Dedov I.I. PTPN22 polymorphisms associated with type 1 diabetes mellitus in ethnic populations of Russian Federation. Diabetes mellitus. 2013;16(2):4-10. (In Russ.) https://doi.org/10.14341/2072-0351-3750

Views: 745


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)