MicroRNAs as targets and biomarkers of myocardial fibrosis in patients with type 1 diabetes mellitus
https://doi.org/10.14341/DM13424
Abstract
BACKGROUND: structural and morphological changes in the heart in young patients with type 1 diabetes mellitus occur at the preclinical stage of cardiovascular disease and worsen the cardiovascular prognosis in this group of patients. Myocardial fibrosis is one of the main factors influencing ventricular myocardial stiffness and the development of heart failure. The search for early markers of myocardial remodeling, among which microRNAs are of particular interest, will improve diagnosis and reduce the risk of cardiovascular complications.
OBJECTIVE: to study the expression levels of individual microRNAs involved in myocardial remodeling processes in young patients with type 1 diabetes mellitus.
MATERIALS AND METHODS: the study was conducted at the Federal State Budgetary Institution “I.I. Dedov National Medical Research Center of Endocrinology” of the Ministry of Health of the Russian Federation. The study included 110 participants without cardiovascular disease, divided into 2 groups: 80 patients with type 1 diabetes (the study group) and 30 individuals without type 1 diabetes (control group). All participants underwent a general clinical examination, bioimpedance analysis, electrocardiography, cardiac MRI with T-1 mapping technology (used for quantitative assessment of myocardial fibrotic changes, extracellular volume fraction, and construction of pixel-wise heart structure maps), ergospirometry, and assessment of circulating miR-126-5p and miR-21-5p expression levels.
RESULTS: in the group of patients with type 1 diabetes, examination revealed signs of myocardial remodeling: сardiac MRI revealed thickening of the interventricular septum (p=0.028), left ventricular posterior wall (p=0.012), and left ventricular relative wall thickness (p<0.001), compared with individuals without type 1 diabetes. Additionally, patients with type 1 diabetes demonstrated significantly lower levels of cardioprotective miR-126-5p (p=0.046). It is noteworthy that 8.7% of patients in the type 1 diabetes group had fibrous tissue in the myocardium. No such patients were detected in the control group.
CONCLUSION: cardiac MRI with late gadolinium enhancement is significantly more sensitive than echocardiography in detecting diffuse myocardial fibrosis, which indicates an unfavorable cardiovascular prognosis. In this study, diffuse myocardial fibrosis was detected by cardiac MRI in 8.7% of patients with type 1 diabetes. The group of type 1 diabetes patients with diffuse myocardial fibrosis was characterized by more pronounced initial structural myocardial changes (according to echocardiographic data). Patients with type 1 diabetes demonstrate lower levels of cardioprotective microRNA — miR-126-5p.
About the Authors
O. I. VengrzhinovskayaRussian Federation
Oksana I. Vengrzhinovskaya - MD, PhD.
11 Dm. Ulyanova street, 117292 Moscow
Competing Interests:
None
I. Z. Bondarenko
Russian Federation
Irina Z. Bondarenko - MD, PhD, Professor.
11 Dm. Ulyanova street, 117292 Moscow
Competing Interests:
None
O. A. Shatskaya
Russian Federation
Olga A. Shatskaya - MD, PhD, leading researcher.
11 Dm. Ulyanova street, 117292 Moscow
Competing Interests:
None
A. A. Lobkova
Russian Federation
Alina A. Lobkova.
11 Dm. Ulyanova street, 117292 Moscow
Competing Interests:
None
N. V. Tarbaeva
Russian Federation
Natalya V. Tarbaeva - MD, PhD.
11 Dm. Ulyanova street, 117292 Moscow
Competing Interests:
None
A. Y. Kornelyuk
Russian Federation
Anastasiya Y. Kornelyuk.
11 Dm. Ulyanova street, 117292 Moscow
Competing Interests:
None
V. Y. Kalashnikov
Russian Federation
Viktor Y. Kalashnikov - MD, PhD, Professor.
11 Dm. Ulyanova street, 117292 Moscow
Competing Interests:
None
M. V. Shestakova
Russian Federation
Marina V. Shestakova - MD, PhD, Professor, Academician of the RAS.
11 Dm. Ulyanova street, 117292 Moscow
Competing Interests:
None
N. G. Mokrysheva
Russian Federation
Natalya G. Mokrysheva - MD, PhD, Professor, Academician of the RAS.
11 Dm. Ulyanova street, 117292 Moscow
Researcher ID AAY-3761-2020; Scopus Author ID 35269746000
Competing Interests:
None
References
1. Ambale-Venkatesh B., Liu C.Y., Liu Y.C., et al. Association of myocardial fibrosis and cardiovascular events: the Multi-Ethnic Study of Atherosclerosis. Eur Heart J Cardiovasc Imaging. 2019;20:168-176. doi: https://doi.org/10.1093/ehjci/jey140
2. Dante B Salvador Jr, Magda R Gamba, Nathalia Gonzalez-Jaramillo, et al. Diabetes and Myocardial Fibrosis: A Systematic Review and Meta-Analysis. JACC Cardiovasc Imaging. 2022;15(5):796-808 doi: https://doi.org/10.1016/j.jcmg.2021.12.008
3. Jinghui Sun, Ruiling Zhou, Mi Liu, Dawu Zhang. The role of myocardial fibrosis in the diabetic cardiomyopathy. Diabetol Metab Syndr. 2025;17(1):242. doi: https://doi.org/10.1186/s13098-025-01783-9
4. Arantxa González, Erik B Schelbert, Javier Díez, Javed Butler. Myocardial Interstitial Fibrosis in Heart Failure: Biological and Translational Perspectives. J Am Coll Cardiol. 2018;71(15):1696-1706. doi: https://doi.org/10.1016/j.jacc.2018.02.021
5. Benjamin Grobman, Arian Mansur, Christine Y Lu. Disparities in heart failure deaths among people with diabetes in the United States: 1999-2020. Diabetes Obes Metab. 2025;27(6):2977-2984. doi: https://doi.org/10.1111/dom.16301
6. Aditya Nagori, Matthew W Segar, Neil Keshvani et al. Prevalence and Predictors of Subclinical Cardiomyopathy in Patients With Type 2 Diabetes in a Health System. J Diabetes Sci Technol. 2025;19(3):699-704. doi: https://doi.org/10.1177/19322968231212219
7. Matteo Armillotta, Francesco Angeli, Pasquale Paolisso et al. Cardiovascular therapeutic targets of sodium-glucose co-transporter 2 (SGLT2) inhibitors beyond heart failure. Pharmacol Ther. 2025:270:108861. doi: https://doi.org/10.1016/j.pharmthera.2025.108861
8. Yunfei Guan, Quancheng Han, Meng Wang, et al. Mechanisms of circular RNAs in diabetic cardiomyopathy: biological characteristics and clinical prospects. Front Genet. 2025:16:1665571. doi: https://doi.org/10.3389/fgene.2025.1665571
9. Raitoharju E, Lyytikäinen LP, Levula M, et al. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis. 2011;219(1):211-217. doi: https://doi.org/10.1016/j.atherosclerosis.2011.07.020
10. Tsuyoshi Nishiguchi, Toshio Imanishi, Takashi Akasaka. MicroRNAs and cardiovascular diseases. Biomed Res Int. 2015:2015:682857. doi: https://doi.org/10.1155/2015/682857
11. Pan K-L, Hsu Y-C, Chang S-T, Chung C-M, Lin C-L. The role of cardiac fibrosis in diabetic cardiomyopathy: from pathophysiology to clinical diagnostic tools. Int J Mol Sci. 2023, 24(10), 8604. doi: https://doi.org/10.3390/ijms24108604
12. Nonaka C, et al. Therapeutic miR-21 Silencing Reduces Cardiac Fibrosis and Modulates Inflammatory Response in Chronic Chagas Disease. International Journal of Molecular Sciences. 2021;22(7):3307. doi: https://doi.org/10.3390/ijms22073307
13. Ranjan P, Dutta RK, Colin K, et al. Bone marrow-fibroblast progenitor cell-derived small extracellular vesicles promote cardiac fibrosis via miR-21-5p and integrin subunit αV signalling. J Extracell Biol. 2024;3(6):e152. doi: https://doi.org/10.1002/jex2.152
14. Dong Jin, Xiu-Yun Yang, Jie-Sheng Wang. MicroRNA-126 Level Increases During Exercise Rehabilitation of Heart Failure with a Preserved Ejection Fraction. Int J Gen Med. 2021:14:3397-3404. doi: https://doi.org/10.2147/IJGM.S316285
15. Fuyu Zhu, Peng Li, Yanhui Sheng. Treatment of myocardial interstitial fibrosis in pathological myocardial hypertrophy. Front. Pharmacol., 2022;13. doi: https://doi.org/10.3389/fphar.2022.1004181
16. Petra Grubić Rotkvić et al. The Mystery of Diabetic Cardiomyopathy: From Early Concepts and Underlying Mechanisms to Novel Therapeutic Possibilities. Int J Mol Sci. 2021;22(11):5973. doi: https://doi.org/10.3390/ijms22115973
17. Levelt E, Gulsin G, Neubauer S, McCann G.P. Mechanisms in endocrinology: Diabetic cardiomyopathy: Pathophysiology and potential metabolic interventions state of the art review. Eur. J. Endocrinol. 2018;178:R127–R139. doi: https://doi.org/10.1530/EJE-17-0724
18. Jia G, Hill MA, Sowers JR. Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circ Res. 2018;122:624–638. doi: https://doi.org/10.1161/CIRCRESAHA.117.311586
19. Jiang X, Tsitsiou E, Herrick SE, Lindsay MA. MicroRNAs and the regulation of fibrosis. FEBS J. 2010;277(9):2015–2021. doi: https://doi.org/10.1111/j.1742-4658.2010.07632.x
20. Pandey A, Khera R, Park B, et al. Relative impairments in hemodynamic exercise reserve parameters in Heart Failure with preserved ejection fraction: a Study-Level Pooled Analysis. JACC Heart Fail. 2018;6:117–126. doi: https://doi.org/10.1016/j.jchf.2017.10.014
21. Schneider SIDR, Silvello D, Martinelli NC, et al. Plasma levels of microRNA-21, −126 and −423-5p alter during clinical improvement and are associated with the prognosis of acute heart failure. Mol Med Rep. 2018;17:4736–4746. doi: https://doi.org/10.3892/mmr.2018.8428
22. Wang X, Lian Y, Wen X, et al. Expression of miR-126 and its potential function in coronary artery disease. Afr Health Sci. 2017;17:474–480. doi: https://doi.org/10.4314/ahs.v17i2.22
23. Ghorbanzadeh V, Mohammadi MD, Dariushnejad H. Cardioprotective effect of crocin combined with voluntary exercise in rat: role of Mir-126 and Mir-210 in heart angiogenesis. Arq Bras Cardiol. 2017;109:54–62. doi: https://doi.org/10.5935/abc.20170087
24. Domańska-Senderowska D, Laguette MN, Jegier A, Cięszczyk P, September AV, Brzeziańska-Lasota E. MicroRNA profile and adaptive response to exercise training: a review. Int J Sports Med. 2019;40(4):227–35, doi: https://doi.org/10.1055/a-0824-4813
25. Isaac R, Reis FCG, Ying W, Olefsky JM. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab. 2021;33(9):1744–62. doi: https://doi.org/10.1016/j.cmet.2021.08.006
26. Luo Z-W, Sun Y-Y, Lin J-R, Qi B-J, Chen J-W. Exosomes derived from inflammatory myoblasts promote M1 polarization and break the balance of myoblast proliferation/differentiation. World J Stem Cells. 2021;13(11):1762. doi: https://doi.org/10.4252/wjsc.v13.i11.1762
27. Dong Jin 1, Xiu-Yun Yang 1, Jie-Sheng Wang 1 MicroRNA-126 Level Increases During Exercise Rehabilitation of Heart Failure with a Preserved Ejection Fraction. Int J Gen Med. 2021:14:3397-3404. doi: https://doi.org/10.2147/IJGM.S316285
28. Universal definition and classification of heart failure : a report of the heart failure society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure / B. Bozkurt, A.J. Coats, H. Tsutsui [et al.]. – Text: direct. Journal of cardiac failure. 2021;S1071-9164(21)00050-56. doi: https://doi.org/10.1016/j.cardfail.2021.01.022
Review
For citations:
Vengrzhinovskaya O.I., Bondarenko I.Z., Shatskaya O.A., Lobkova A.A., Tarbaeva N.V., Kornelyuk A.Y., Kalashnikov V.Y., Shestakova M.V., Mokrysheva N.G. MicroRNAs as targets and biomarkers of myocardial fibrosis in patients with type 1 diabetes mellitus. Diabetes mellitus. 2025;28(6):523-532. (In Russ.) https://doi.org/10.14341/DM13424
JATS XML
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).









































