Deintensification of basal-bolus insulin therapy by switching to a fixed-ratio combination of insulin glargine and lixisenatide in patients with type 2 diabetes
https://doi.org/10.14341/DM13381
Abstract
BACKGROUND: Deintensification of basal-bolus insulin therapy (BBIT) with simplification of the treatment regimen is a possible and necessary therapeutic strategy for some patients with type 2 diabetes (T2D). One of the options for deintensification is the transition to fixed combination of insulin glargine/lixisenatide (iGlarLixi).
AIM: To determine the efficacy and safety of deintensification of BBIT in hospitalized patients with T2D by switching to iGlarLixi under continuous glucose monitoring (CGM).
MATERIALS AND METHODS: Design: single-center, comparative, observational study in real-world settings. A total of 283 T2D patients on BBIT were included, 118 subjects underwent BBIT deintensification under CGM control according to clinical indications, 165 patients continued BBIT. Thirty patients were re-examined one year after deintensification. Time In target Range (TIR), Time Above Range (TAR), Time Below Range (TBR), as well as Coefficient of Variation (CV), Mean Amplitude of Glycemic Excursions (MAGE), Lability Index (LI), and Mean Absolute Glucose rate of change (MAG) were estimated. Endogenous insulin secretion was assessed by fasting and 2-hour postprandial C-peptide levels. The estimated glucose disposal rate (eGDR) was used as a measure of insulin sensitivity.
RESULTS: The groups were similar in age, diabetes duration, glycated hemoglobin (HbA1c) and eGDR. Body mass index (BMI) and C-peptide levels were higher, while the duration of insulin therapy and initial daily insulin dose (DID) were lower in patients of the deintensification group (all p<0.0004). During deintensification, DID was reduced (from 64 to 30 U/day, p<0.001). The achieved TIR and TBR values did not differ in two groups. In patients on iGlarLixi, TAR L2 (>13.9 mmol/L), CV, MAGE and MAG were lower (all p<0.05). In multivariate regression analysis, BMI, DID and fasting C-peptide were associated with successful deintensification. In ROC analysis, fasting C-peptide was the best predictor with a cut-off point of 0.92 ng/mL. One year after the treatment deintensification, there was a decrease in HbA1c (-0.5%, p=0.001) and body weight (-0.8 kg, p=0.003) and an increase in postprandial C-peptide levels (p=0.029) without changes in eGDR.
CONCLUSION: Switching to iGlarLixie is an effective therapeutic option for patients with T2D with normal C-peptide levels who require deintensification of BBIT.
Keywords
About the Authors
V. V. KlimontovRussian Federation
Vadim V. Klimontov, MD, PhD, Professor
Novosibirsk
6 Arbuzov Street, 630090 Novosibirsk
Researcher ID: R-7689-2017
Scopus Author ID: 8295977000
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.
S. A. Yakovleva
Russian Federation
Sophia A. Yakovleva, MD
Novosibirsk
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.
E. A. Koroleva
Russian Federation
Elena A. Koroleva, MD, PhD
Novosibirsk
Researcher ID: S-1384-2017
Scopus Author ID: 55522435000
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.
D. M. Bulumbaeva
Russian Federation
Dinara M. Bulumbaeva, MD, PhD
Novosibirsk
Researcher ID: R-7904-2017
Scopus Author ID: 57195304317
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.
K. R. Mavlianova
Russian Federation
Kamilla R. Mavlianova, MD
Novosibirsk
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.
K. Raisinezhad
Russian Federation
Karsa Raeisinezhad
Novosibirsk
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.
References
1. American Diabetes Association Professional Practice Committee. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes—2025. Diabetes Care. 2024;48(Suppl.1):S181-S206. doi:10.2337/dc25-S009
2. Klimontov V.V., Tsiberkin A.I., Fazullina O.N., Prudnikova M.A., Tyan N.V., Konenkov V.I. Hypoglycemia in type 2 diabetes patients treated with insulin: the advantages of continuous glucose monitoring. Diabetes mellitus. 2014;17(1):75-80. (In Russ.). doi:10.14341/DM2014175-80
3. Mattishent K, Loke YK. Meta-Analysis: Association Between Hypoglycemia and Serious Adverse Events in Older Patients Treated With Glucose-Lowering Agents. Front Endocrinol. 2021;12:571568. doi:10.3389/fendo.2021.571568
4. Dedov I., Shestakova M., Mayorov A., et al., Standards of Specialized Diabetes Care / Edited by Dedov I.I., Shestakova M.V., Mayorov A.Yu. 11th Edition. Diabetes mellitus. 2023;26(2S):1-157. (In Russ.) doi:10.14341/DM13042-10287
5. Frias JP. What is the 'real-world' experience with fixed-ratio combination therapy (insulin + GLP-1 receptor agonist) in routine clinical practice? Take-home messages for clinicians regarding key outcomes. Diabetes Obes Metab. 2025; in press. doi: 10.1111/dom.16593.
6. FLAT-SUGAR Trial Investigators. Glucose Variability in a 26-Week Randomized Comparison of Mealtime Treatment With Rapid-Acting Insulin Versus GLP-1 Agonist in Participants With Type 2 Diabetes at High Cardiovascular Risk. Diabetes Care. 2016;39(6):973-981. doi:10.2337/dc15-2782
7. Martinez M, Santamarina J, Pavesi A, Musso C, Umpierrez GE. Glycemic variability and cardiovascular disease in patients with type 2 diabetes. BMJ Open Diabetes Res Care. 2021;9(1):e002032. doi:10.1136/bmjdrc-2020-002032
8. Klimontov VV, Saik OV, Korbut AI. Glucose Variability: How Does It Work? Int J Mol Sci. 2021;22(15):7783. doi: 10.3390/ijms22157783
9. Liu Y, Li C, Li X, Yang J, Zheng Y, Li F, Wang X. iGlarLixi for type 2 diabetes: a systematic review and meta-analysis. Endocrine. 2024;86(1):135-142. doi: 10.1007/s12020-024-03868-3
10. Novodvorský P, Thieme L, Laňková I, et al. The IDEAL (Insulin therapy DE-intensificAtion with iglarLixi) Randomised Controlled Trial-Study Design and Protocol. Diabetes Ther Res Treat Educ Diabetes Relat Disord. 2024;15(6):1461-1471. doi:10.1007/s13300-024-01582-x
11. Clarke WL, Cox DJ, Gonder-Frederick LA, Julian D, Schlundt D, Polonsky W. Reduced awareness of hypoglycemia in adults with IDDM. A prospective study of hypoglycemic frequency and associated symptoms. Diabetes Care. 1995;18(4):517-522. doi:10.2337/diacare.18.4.517
12. Zhang Z, Zhao L, Lu Y, Xiao Y, Zhou X. Insulin resistance assessed by estimated glucose disposal rate and risk of incident cardiovascular diseases among individuals without diabetes: findings from a nationwide, population based, prospective cohort study. Cardiovasc Diabetol. 2024;23(1):194. doi:10.1186/s12933-024-02256-5
13. Battelino T, Danne T, Bergenstal RM, et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care. 2019;42(8):1593-1603. doi:10.2337/dci19-0028
14. Kovatchev B. Glycemic Variability: Risk Factors, Assessment, and Control. J Diabetes Sci Technol. 2019;13(4):627-635. doi: 10.1177/1932296819826111
15. Giugliano D, Longo M, Caruso P, et al. Feasibility of Simplification From a Basal-Bolus Insulin Regimen to a Fixed-Ratio Formulation of Basal Insulin Plus a GLP-1RA or to Basal Insulin Plus an SGLT2 Inhibitor: BEYOND, a Randomized, Pragmatic Trial. Diabetes Care. 2021;44(6):1353-1360. doi:10.2337/dc20-2623
16. Aronson R, Umpierrez G, Stager W, Kovatchev B. Insulin glargine/lixisenatide fixed-ratio combination improves glycaemic variability and control without increasing hypoglycaemia. Diabetes Obes Metab. 2019;21(3):726-731. doi:10.1111/dom.13580
17. Munshi M, Kahkoska AR, Neumiller JJ, et al. Realigning diabetes regimens in older adults: a 4S Pathway to guide simplification and deprescribing strategies. Lancet Diabetes Endocrinol. 2025;13(5):427-437. doi:10.1016/S2213-8587(24)00372-3
18. Fejes R, Kádár C, Kovács-Huber R, et al. Efficacy of Simplifying Complex Insulin Regimen on Glycometabolic Parameters and Target Organ Damage in Type 2 Diabetes: A Retrospective Cohort Study. J Diabetes Res. 2025;2025:9141564. doi:10.1155/jdr/9141564
19. Bruinstroop E, Meyer L, Brouwer CB, van Rooijen DE, van Dam PS. Retrospective Analysis of an Insulin-to-Liraglutide Switch in Patients with Type 2 Diabetes Mellitus. Diabetes Ther Res Treat Educ Diabetes Relat Disord. 2018;9(3):1369-1375. doi:10.1007/s13300-018-0438-9
20. Kawaguchi Y, Hajika Y, Rinka M, et al. Comparison of efficacy and safety of insulin degludec/liraglutide and insulin glargine U-100/lixisenatide in individuals with type 2 diabetes mellitus using professional continuous glucose monitoring. J Diabetes Investig. 2024;15(5):598-607. doi:10.1111/jdi.14151
21. Danne T, Nimri R, Battelino T, et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care. 2017;40(12):1631-1640. doi:10.2337/dc17-1600
Supplementary files
|
|
1. Figure 1. Association of basal–bolus insulin therapy deintensification with body mass index, total daily insulin dose, and fasting C-peptide concentration in patients with type 2 diabetes (ROC analysis). | |
| Subject | ||
| Type | Исследовательские инструменты | |
View
(277KB)
|
Indexing metadata ▾ | |
Review
For citations:
Klimontov V.V., Yakovleva S.A., Koroleva E.A., Bulumbaeva D.M., Mavlianova K.R., Raisinezhad K. Deintensification of basal-bolus insulin therapy by switching to a fixed-ratio combination of insulin glargine and lixisenatide in patients with type 2 diabetes. Diabetes mellitus. 2025;28(5):424-432. (In Russ.) https://doi.org/10.14341/DM13381
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).









































