Preview

Diabetes mellitus

Advanced search

Review of international practice of screening and monitoring of type 1 diabetes mellitus at preclinical stages

https://doi.org/10.14341/DM13361

Abstract

Type 1 diabetes is an autoimmune disease that causes damage and destruction of the pancreatic islet beta cells, leading to insufficient insulin production, followed by metabolic disturbances and clinically overt hyperglycemia, which requires lifelong insulin therapy. Currently, it is possible to detect the disease at preclinical stages, when pancreatic islet beta-cell function is sufficient to prevent hyperglycemia and the need for insulin therapy, by determining antibodies to islet cells (ICA, IA-2, GAD, IAA, Zn8T). Due to the high relevance and growing demands from the medical community regarding the problem of early diagnosis of T1D and the need to standardize approaches, several international guidelines on screening and monitoring individuals with positive autoantibodies (AAb) at preclinical stages of T1D were published during 2024. Monitoring these patients will reduce the risk of DKA, give them and their families more time to acquire knowledge and skills for diabetes management, and may also reduce anxiety and stress associated with the onset of the clinical stage of T1D. This review analyzes and compares international approaches to screening and monitoring the preclinical stages of T1D.

About the Authors

D. N. Laptev
Endocrinology Research Centre
Russian Federation

Dmitry N. Laptev - MD, PhD.

11 Dm. Ulyanova street, 117292 Moscow

WoS Researcher ID O-1826-2013; Scopus Author ID 24341083800


Competing Interests:

None



E. V. Titovich
Endocrinology Research Centre
Russian Federation

Elena V. Titovich - MD, PhD.

11 Dm. Ulyanova street, 117292 Moscow

Researcher ID AAO-2567-2020; Scopus Author ID 6507024916


Competing Interests:

None



A. A. Fedorinin
Endocrinology Research Centre
Russian Federation

Artem A. Fedorinin - MD.

11 Dm. Ulyanova street, 117292 Moscow

Researcher ID rid97643; Scopus Author ID 57224524155


Competing Interests:

None



O. B. Bezlepkina
Endocrinology Research Centre
Russian Federation

Olga B. Bezlepkina - MD, PhD.

11 Dm. Ulyanova street, 117292 Moscow

Researcher ID B-6627-2017; Scopus Author ID 6507632848


Competing Interests:

None



V. A. Peterkova
Endocrinology Research Centre
Russian Federation

Valentina A. Peterkova - MD, PhD, Professor, Academician of RAS.

11 Dm. Ulyanova street, 117292 Moscow


Competing Interests:

None



I. R. Minniakhmetov
Endocrinology Research Centre
Russian Federation

Ildar R. Minniakhmetov - PhD in Biology.

11 Dm. Ulyanova street, 117292 Moscow


Competing Interests:

None



N. G. Mokrysheva
Endocrinology Research Centre
Russian Federation

Natalya G. Mokrysheva - MD, PhD, Professor, Academician of the RAS.

11 Dm. Ulyanova street, 117292 Moscow


Competing Interests:

None



References

1. Quattrin T, Mastrandrea LD, Walker LSK. Type 1 diabetes. Lancet. 2023;401(10394):2149-2162. doi: https://doi.org/10.1016/S0140-6736(23)00223-4

2. Herold KC, Delong T, Perdigoto AL, et al. The immunology of type 1 diabetes. Nat Rev Immunol. 2024;24(6):435-451. doi: https://doi.org/10.1038/s41577-023-00985-4

3. Gregory GA, Robinson TIG, Linlater SE, et al. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. Lancet Diabetes Endocrinol. 2022;10(10):741-760. doi: https://doi.org/10.1016/S2213-8587(22)00280-7

4. Dedov II, Shestakova MV, Vikulova OK, et al. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010–2022. Diabetes mellitus. 2023;26(2):104-123. (In Russ.) doi: https://doi.org/10.14341/DM13035

5. Laptev DN, Bezlepkina OB, Sheshko EL, et al. Main epidemiological indicators of type 1 diabetes mellitus in children in the Russian Federation for 2014–2023. Problems of Endocrinology. 2024;70(5):76-83. (In Russ.) doi: https://doi.org/10.14341/probl13515

6. Rossiiskaya assotsiatsiya endokrinologov. Klinicheskie rekomendatsii. Sakharnyi diabet 1 tipa u detei. Moscow: MZ RF; 2022. (In Russ.)

7. American Diabetes Association. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2025. Diabetes Care. 2025;48(Suppl 1):S27-S49. doi: https://doi.org/10.2337/dc25-S002

8. Haller MJ, Bell KJ, Besser REJ, et al. ISPAD Clinical Practice Consensus Guidelines 2024: Screening, Staging, and Strategies to Preserve Beta-Cell Function in Children and Adolescents with Type 1 Diabetes. Horm Res Paediatr. 2024;97(6):529-545. doi: https://doi.org/10.1159/000543035

9. Insel RA, Dunne JL, Atkinson MA, et al. Staging presymptomatic type 1 diabetes: A scientific statement of JDRF, the endocrine society, and the American Diabetes Association. Diabetes Care. 2015;38(10):1964–1974. doi: https://doi.org/10.2337/dc15-1419

10. Pugliese AJ. Autoreactive T cells in type 1 diabetes. Clin Invest. 2017;127(8):2881-2891. doi: https://doi.org/10.1172/JCI94549

11. American Diabetes Association. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2024. Diabetes Care. 2024;47(Suppl 1):S20-S42. doi: https://doi.org/10.2337/dc24-S002

12. Parikka V, Näntö-Salonen K, Saarinen M, et al. Early seroconversion and rapidly increasing autoantibody concentrations predict prepubertal manifestation of type 1 diabetes in children at genetic risk. Diabetologia. 2012;55:1926–1936. doi: https://doi.org/10.1007/s00125-012-2523-3

13. Ziegler AG, Bonifacio E. Age-related islet autoantibody incidence in offspring of patients with type 1 diabetes. Diabetologia. 2012;55(7):1937-1943. doi: https://doi.org/10.1007/s00125-012-2472-x

14. Ziegler AG. The countdown to type 1 diabetes: when, how and why does the clock start? Diabetologia. 2023;66(7):1169-1178. doi: https://doi.org/10.1007/s00125-023-05927-2

15. Krischer JP, Lynch KF, Schatz DA, et al. The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: the TEDDY study. Diabetologia. 2015;58(5):980-987. doi: https://doi.org/10.1007/s00125-015-3514-y

16. Thompson PJ, Pipella J, Rutter GA, et al. Islet autoimmunity in human type 1 diabetes: initiation and progression from the perspective of the beta cell. Diabetologia. 2023;66(11):1971-1982. doi: https://doi.org/10.1007/s00125-023-05970-z

17. Sims EK, Besser REJ, Dayan C et al. Screening for Type 1 Diabetes in the General Population: A Status Report and Perspective. Diabetes. 2022;71(4):610-623. doi: https://doi.org/10.2337/dbi20-0054

18. So M, Speake C, Steck, AK, et al. Advances in type 1 diabetes prediction using islet autoantibodies: Beyond a simple count. Endocrine Reviews. 2021;42(5):584–604. doi: https://doi.org/10.1210/endrev/bnab013

19. Endesfelder D, Castell WZ, Bonifacio E, et al. Time-Resolved Autoantibody Profiling Facilitates Stratification of Preclinical Type 1 Diabetes in Children. Diabetes. 2019;68(1):119-130. doi: https://doi.org/10.2337/db18-0594

20. Bravis V, Kaur A, Walkey HC, et al. Relationship between islet autoantibody status and the clinical characteristics of children and adults with incident type 1 diabetes in a UK cohort. BMJ Open. 2018;8(4):e020904. doi: https://doi.org/10.1136/bmjopen-2017-020904

21. Kwon BC, Anand V, Achenbach P, et al. Progression of type 1 diabetes from latency to symptomatic disease is predicted by distinct autoimmune trajectories. Nat Commun. 2022;13(1):1514. doi: https://doi.org/10.1038/s41467-022-28909-1

22. Sims EK, Cuthbertson D, Ferrat LA, et al. IA-2A positivity increases risk of progression within and across established stages of type 1 diabetes. Diabetologia. 2025;68(5):993-1004. doi: https://doi.org/10.1007/s00125-025-06382-x

23. Dahl A, Jenkins S, Pittock SJ, et al. Comprehensive Diabetes Autoantibody Laboratory-Based Clinical Service Testing in 6044 Consecutive Patients: Analysis of Age and Sex Effects. J Appl Lab Med. 2022;7(5):1037-1046. doi: https://doi.org/10.1093/jalm/jfac037

24. Glaser N, Fritsch M, Priyambada L, et al. ISPAD clinical practice consensus guidelines 2022: Diabetic ketoacidosis and hyperglycemic hyperosmolar state. Pediatr Diabetes. 2022;23(7):835-856. doi: https://doi.org/10.1111/pedi.13406

25. Sultanova LM, Raisina LR, Shaidullina MR. Diagnostika i lechenie ketoatsidoza pri sakharnom diabete u detei. Prakticheskaya meditsina. 2008;3(27):43-45. (In Russ.)

26. Gibb FW, Teoh WL, Graham J, et al. Risk of death following admission to a UK hospital with diabetic ketoacidosis. Diabetologia. 2016;59(10):2082-2087. doi: https://doi.org/10.1007/s00125-016-4034-0

27. Brazier J, Peasgood T, Mukuria C, et al. The EQ-HWB: Overview of the Development of a Measure of Health and Wellbeing and Key Results. Value Health. 2022;25(12):S225. doi: https://doi.org/10.1016/j.jval.2022.09.1100

28. Cameron FJ, Scratch SE, Nadebaum C, et al. Neurological consequences of diabetic ketoacidosis at initial presentation of type 1 diabetes in a prospective cohort study of children. Diabetes Care. 2014;37(6):1554-1562. doi: https://doi.org/10.2337/dc13-1904

29. Hammersen J, Tittel SR, Warncke K, et al. Previous diabetic ketoacidosis as a risk factor for recurrence in a large prospective contemporary pediatric cohort: Results from the DPV initiative. Pediatr Diabetes. 2021;22(3):455-462. doi: https://doi.org/10.1111/pedi.13185

30. Rawshani A, Sattar N, Franzén S, et al. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet. 2018;392(10146):477-486. doi: https://doi.org/10.1016/S0140-6736(18)31506-6

31. Gaudieri PA, Chen R, Greer TF, et al. Cognitive function in children with type 1 diabetes: a meta-analysis. Diabetes Care. 2008;31(9):1892-1897. doi: https://doi.org/10.2337/dc07-2132

32. Sharp SA, Rich SS, Wood AR, et al. Development and Standardization of an Improved Type 1 Diabetes Genetic Risk Score for Use in Newborn Screening and Incident Diagnos. Diabetes Care. 2019;42(2):200-207. doi: https://doi.org/10.2337/dc18-1785

33. Luckett AM, Weedon MN, Hawkes G, et al. Utility of genetic risk scores in type 1 diabetes. Diabetologia. 2023;66(9):1589-1600. doi: https://doi.org/10.1007/s00125-023-05955-y

34. Bonifacio E, Beyerlein A, Hippich M, et al. Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes: A prospective study in children. PLoS Med. 2018;15(4):e1002548. doi: https://doi.org/10.1371/journal.pmed.1002548

35. Ghalwash M, Dunne JL, Lundgren M, et al. Two-age islet-autoantibody screening for childhood type 1 diabetes: a prospective cohort study. Lancet Diabetes Endocrinol. 2022;10(8):589-596. doi: https://doi.org/10.1016/S2213-8587(22)00141-3

36. Ghalwash M, Anand V, Lou O, et al. Islet autoantibody screening in at-risk adolescents to predict type 1 diabetes until young adulthood: a prospective cohort study. Lancet Child Adolesc Health. 2023;7(4):261-268. doi: https://doi.org/10.1016/S2352-4642(22)00350-9

37. Pöllänen PM, Weedon MN, Hawkes G, et al. Utility of genetic risk scores in type 1 diabetes. J Clin Endocrinol Metab. 2020;105(12):e4638-e4651. doi: https://doi.org/10.1210/clinem/dgaa624

38. Kawasaki E. Anti-Islet Autoantibodies in Type 1 Diabetes. Int J Mol Sci. 2023;24(12):10012. doi: https://doi.org/10.3390/ijms241210012

39. Roep BO, Thomaidou S, Tienhoven R, et al. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat Rev Endocrinol. 2021;17:150-161. doi: https://doi.org/10.1038/s41574-020-00443-4

40. Besser REJ, Bell KJ, Couper JJ, et al. ISPAD Clinical Practice Consensus Guidelines 2022: Stages of type 1 diabetes in children and adolescents. Pediatr Diabetes. 2022;23(8):1175-1187. doi: https://doi.org/10.1111/pedi.13410

41. Pugliese A. Insulitis in the pathogenesis of type 1 diabetes. Pediatr Diabetes. 2016;17(Suppl 22):31-36. doi: https://doi.org/10.1111/pedi.12388

42. Wolfsdorf JI, Glaser N, Agus M, et al. ISPAD Clinical Practice Consensus Guidelines 2018: Diabetic ketoacidosis and the hyperglycemic hyperosmolar state. Pediatr Diabetes. 2018;19(Suppl 27):155-177. doi: https://doi.org/10.1111/pedi.12701

43. Ziegler AG, Kick K, Bonifacio E, et al. Yield of a Public Health Screening of Children for Islet Autoantibodies in Bavaria, Germany. JAMA. 2020;323(4):339-351. doi: https://doi.org/10.1001/jama.2019.21565

44. diaTribe [Internet]. Early Diabetes Screening in Kids Can Improve Quality of Life [cited 2025 Apr 04]. Available from: https://diatribe.org/early-diabetes-screening-kids-can-improve-quality-life

45. Barker JM, Goehrig SH, Barriga K, et al. Clinical characteristics of children diagnosed with type 1 diabetes through intensive screening and follow-up. Diabetes Care. 2004;27(6):1399-1404. doi: https://doi.org/10.2337/diacare.27.6.1399

46. Winkler C, Shober E, Ziegler AG, et al. Markedly reduced rate of diabetic ketoacidosis at onset of type 1 diabetes in relatives screened for islet autoantibodies. Pediatr Diabetes. 2012;13(4):308-313. doi: https://doi.org/10.1111/j.1399-5448.2011.00829.x

47. Duca LM, Wang B, Rewers M, et al. Diabetic Ketoacidosis at Diagnosis of Type 1 Diabetes Predicts Poor Long-term Glycemic Control. Diabetes Care. 2017;40(9):1249-1255. doi: https://doi.org/10.2337/dc17-0558

48. Karges B, Prinz N, Placzek K, et al. A Comparison of Familial and Sporadic Type 1 Diabetes Among Young Patients. Diabetes Care. 2021;44(5):1116-1124. doi: https://doi.org/10.2337/dc20-1829

49. ISPAD 2023 Rotterdam, The Netherlands. 49th Annual Conference; October 18-21; 2023

50. Phillip M, Achenbach P, Addala A, et al. Consensus Guidance for Monitoring Individuals With Islet Autoantibody-Positive Pre-Stage 3 Type 1 Diabetes. Diabetes Care. 2024;47(8):1276-1298. doi: https://doi.org/10.2337/dci24-0042

51. Hendriks AEJ, Marcovecchio ML, Besser REJ, et al. Clinical care advice for monitoring of islet autoantibody positive individuals with presymptomatic type 1 diabetes. Diabetes Metab Res Rev. 2024;40(2):e3777. doi: https://doi.org/10.1002/dmrr.3777

52. Steck AK, Larsson HE, Liu X, et al. Residual beta-cell function in diabetes children followed and diagnosed in the TEDDY study compared to community controls. Pediatr Diabetes. 2017;18(8):794-802. doi: https://doi.org/10.1111/pedi.12485

53. Smith LB, Besser REJ, Dayan C, et al. Screening for Type 1 Diabetes in the General Population: A Status Report and Perspective. Pediatr Diabetes. 2018;19(5):1025-1033. doi: https://doi.org/10.1136/bmj-2021-067937

54. Dayan CM, Besser REJ, Oram RA, et al. Preventing type 1 diabetes in childhood. Science. 2021;373(6554):506-510. doi: https://doi.org/10.1126/science.abi4742

55. Besser REJ, Ng SM, Gregory GW, et al. General population screening for childhood type 1 diabetes: is it time for a UK strategy? Arch Dis Child. 2022;107:790-795. doi: https://doi.org/10.1136/archdischild-2021-321864

56. Scheiner G, Weiner S, Kruger DF, et al. Screening for Type 1 Diabetes: Role of the Diabetes Care and Education Specialist. ADCES in Practice. 2022;10(5):20-25. doi: https://doi.org/10.1177/2633559X221110216


Supplementary files

Review

For citations:


Laptev D.N., Titovich E.V., Fedorinin A.A., Bezlepkina O.B., Peterkova V.A., Minniakhmetov I.R., Mokrysheva N.G. Review of international practice of screening and monitoring of type 1 diabetes mellitus at preclinical stages. Diabetes mellitus. 2025;28(6):587-596. (In Russ.) https://doi.org/10.14341/DM13361

Views: 9

JATS XML

ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)