The illusion of accuracy: a critical analysis of continuous glucose monitoring systems quality assessment methods
https://doi.org/10.14341/DM13329
Abstract
Continuous glucose monitoring (CGM) has been established as a method for self-assessment glucose levels in individuals with diabetes mellitus in the Russian Federation for more than 15 years. The main characteristics of CGM sensors are its’ accuracy and performance that ensure their effectiveness and safety. Currently, there are no standardized guidelines that outline the minimum accuracy standards for CGM systems.
This review is aimed to codify the current methods for evaluating CGMs accuracy and performance across the different countries, as well as to propose local Russian guidelines on CGM device accuracy evaluation. This involves guidelines for the design of clinical trials to assess sensors accuracy and the minimum acceptable performance requirements for CGM devices to be utilized in clinical settings.
About the Authors
M. V. ShestakovaRussian Federation
Marina V. Shestakova - MD, PhD, Professor, Academician of the RAS.
11 Dm. Ulyanova street, 117292 Moscow
Scopus Author ID 7004195530
Competing Interests:
None
V. A. Peterkova
Russian Federation
Valentina A. Peterkova - PhD, Professor, Academician of the RAS.
Moscow
Competing Interests:
None
G. R. Galstyan
Russian Federation
Gagik R. Galstyan - MD, PhD, Professor.
Moscow
Competing Interests:
None
L. I. Ibragimova
Russian Federation
Liudmila I. Ibragimova - MD, PhD.
Moscow
Competing Interests:
None
V. V. Klimontov
Russian Federation
Vadim V. Klimontov - MD, PhD, Professor.
Novosibirsk
Researcher ID R-7689-2017; Scopus Author ID 8295977000
Competing Interests:
None
D. N. Laptev
Russian Federation
Dmitry N. Laptev - MD, PhD.
Moscow
Researcher ID O-1826-2013; Scopus Author ID 24341083800
Competing Interests:
None
I. P. Malaya
Russian Federation
Irina P. Malaya - MD, PhD.
Moscow
Researcher ID AAO-8351-2021; Scopus Author ID 57218705086
Competing Interests:
None
E. A. Shestakova
Russian Federation
Ekaterina A. Shestakova - MD, PhD.
Moscow
Competing Interests:
None
References
1. Leelarathna L, Evans ML, Neupane S, et al. Intermittently Scanned Continuous Glucose Monitoring for Type 1 Diabetes. N Engl J Med. 2022;387(16):1477-1487 doi: https://doi.org/10.1056/NEJMoa2205650
2. Bolinder J, Antuna R, Geelhoed-Duijvestijn P, et al. Novel glucose-sensing technology and hypoglycaemia in type 1 diabetes: a multicentre, non-masked, randomized controlled trial. Lancet. 2016;388(10057):2254-2263 doi: https://doi.org/10.1016/S0140-6736(16)31535-5
3. Campbell FM, Murphy NP, Stewart C, et al. Outcomes of using flash glucose monitoring technology by children and young people with type 1 diabetes in a single arm study. Pediatr Diabetes. 2018;19(7):1294-1301 doi: https://doi.org/10.1111/pedi.12735
4. Evans M, Welsh Z, Ells S, Seibold A. The Impact of Flash Glucose Monitoring on Glycaemic Control as Measured by HbA1c: A Meta-analysis of Clinical Trials and Real-World Observational Studies. Diabetes Ther. 2020;11(1):83-95. doi: https://doi.org/10.1007/s13300-019-00720-0
5. Evans M, Welsh Z, Seibold A. Reductions in HbA1c with Flash Glucose Monitoring Are Sustained for up to 24 Months: A Meta-Analysis of 75 Real-World Observational Studies. Diabetes Ther. 2022;13(6):1175-1185. doi: https://doi.org/10.1007/s13300-022-01253-9
6. Fokkert M, van Dijk P, Edens M, et al. Improved well-being and decreased disease burden after 1-year use of flash glucose monitoring (FLARE-NL4). BMJ Open Diabetes Res Care. 2019;7(1):e000809 doi: https://doi.org/10.1136/bmjdrc-2019-000809
7. Wright EE, Jr., Kerr MSD, Reyes IJ, et al. Use of Flash Continuous Glucose Monitoring Is Associated With A1C Reduction in People With Type 2 Diabetes Treated With Basal Insulin or Noninsulin Therapy. Diabetes Spectr. 2021;34(2):184-189 doi: https://doi.org/10.2337/ds20-0069
8. Wright EE, Roberts GJ, Chuang JS, et al. Initiating GLP-1 Therapy in Combination with FreeStyle Libre Provides Greater Benefit Compared with GLP-1 Therapy Alone. Diabetes Technol Ther. 2024;26(10):754-762. doi: https://doi.org/10.1089/dia.2024.0015
9. Yaron M, Roitman E, Aharon-Hananel G, et al. Effect of Flash Glucose Monitoring Technology on Glycemic Control and Treatment Satisfaction in Patients With Type 2 Diabetes. Diabetes Care. 2019;42(7):1178-1184. doi: https://doi.org/10.2337/dc18-0166
10. Laptev DN, Bezlepkina OB, Demina ES, et al. Evaluation of FreeStyle Libre in pediatric t1dm: improved glycemic control, reduction in diabetic ketoacidosis and severe hypoglycemia. Problems of Endocrinology. 2022;68(3):86-92. (In Russ.) doi: https://doi.org/10.14341/probl12877
11. Danne T, Nimri R, Battelino T, et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care. 2017;40(12):1631-1640. doi: https://doi.org/10.2337/dc17-1600
12. Bailey TS, Alva S. Landscape of Continuous Glucose Monitoring (CGM) and Integrated CGM: Accuracy Considerations. Diabetes Technol Ther. 2021;23(S3):S5-S11. doi: https://doi.org/10.1089/dia.2021.0236
13. Mathieu C, Irace C, Wilmot EG, et al. Minimum expectations for market authorization of continuous glucose monitoring devices in Europe-’eCGM’ compliance status. Diabetes Obes Metab. 2025;27(3):1025-1031. doi: https://doi.org/10.1111/dom.16153
14. Pemberton JS, Wilmot EG, Barnard-Kelly K, et al. CGM accuracy: Contrasting CE marking with the governmental controls of the USA (FDA) and Australia (TGA): A narrative review. Diabetes Obes Metab. 2023;25(4):916-939. doi: https://doi.org/10.1111/dom.14962
15. Peterkova VA, Ametov AS, Mayorov AY, et al. The Scientific Advisory board resolution: Implementation of intermittently scanned Continuous Glucose monitoring in clinical practice to improve glycemic control. Diabetes mellitus. 2021;24(2):185-192. (In Russ.) doi: https://doi.org/10.14341/DM12753
16. Clinical and Laboratory Standards Institute (CLSI). Performance Metrics for Continuous Interstitial Glucose Monitoring (CLSI Guideline POCT05). 2nd ed. Wayne, PA: CLSI; 2020
17. Momynaliev KT, Prokopyev MV, Ivanov IV. On Standardization and Evaluation of Continuous Glucose Monitoring Systems. Measurement Standards. Reference Materials. 2023;19(5):113-125. (In Russ.) doi: https://doi.org/10.20915/2077-1177-2023-19-5-113-125
18. Ajjan RA, Cummings MH, Jennings P, et al. Accuracy of flash glucose monitoring and continuous glucose monitoring technologies: Implications for clinical practice. Diab Vasc Dis Res. 2018;15(3):175-184 doi: https://doi.org/10.1177/1479164118756240
19. Vigersky RA, Shin J. The Myth of MARD (Mean Absolute Relative Difference): Limitations of MARD in the Clinical Assessment of Continuous Glucose Monitoring Data. Diabetes Technol Ther. 2024;26(S3):38-44. doi: https://doi.org/10.1089/dia.2023.0435
20. Zhu J, Volkening LK, Laffel LM. Distinct Patterns of Daily Glucose Variability by Pubertal Status in Youth With Type 1 Diabetes. Diabetes Care. 2020;43(1):22-28 doi: https://doi.org/10.2337/dc19-0083
21. Heinemann L, Schoemaker M, Schmelzeisen-Redecker G, et al. Benefits and Limitations of MARD as a Performance Parameter for Continuous Glucose Monitoring in the Interstitial Space. J Diabetes Sci Technol. 2020;14(1):135-150 doi: https://doi.org/10.1177/1932296819855670
22. Klonoff DC, Gabbay M, Moon SJ, Wilmot EG. Importance of FDA-Integrated Continuous Glucose Monitors to Ensure Accuracy of Continuous Glucose Monitoring. J Diabetes Sci Technol. 2024:19322968241250357 doi: https://doi.org/10.1177/19322968241250357
23. Freckmann G, Eichenlaub M, Waldenmaier D, et al. Clinical Performance Evaluation of Continuous Glucose Monitoring Systems: A Scoping Review and Recommendations for Reporting. J Diabetes Sci Technol. 2023;17(6):1506-1526 doi: https://doi.org/10.1177/19322968231190941
24. Dedov II, Shestakova MV, Maiorov AY, et al. Klinicheskie rekomendatsii. Sakharnyi diabet 1 tipa u vzroslykh (2022 g). Available from: https://cr.minzdrav.gov.ru/preview-cr/286_2 (In Russ.)
25. Dedov II, Shestakova MV, Maiorov AY, et al. Klinicheskie rekomendatsii. Sakharnyi diabet 2 tipa u vzroslykh (2022 g). Available from: https://cr.minzdrav.gov.ru/preview-cr/290_2 (In Russ.)
26. Peterkova VA, Shestakova MV, Bezlepkina OB, et al. Klinicheskie rekomendatsii. Sakharnyi diabet 1 tipa u detei (2022). Available from: https://cr.minzdrav.gov.ru/preview-cr/287_3 (In Russ.)
27. Food and Drug Administration (FDA) [Internet]. Classification of the integrated continuous glucose monitoring system. Federal register February 18. 2022 [accessed 28 Feb 2025]. Available from: https://www.federalregister.gov/documents/2022/02/18/2022-03504/medical-devices-clinicalchemistry-and-clinical-toxicology-devices-classification-ofthe-integrated
Supplementary files
|
1. Figure 1. Minimum accuracy requirements for continuous glucose monitoring systems proposed by the European Expert Panel [13]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(569KB)
|
Indexing metadata ▾ |
Review
For citations:
Shestakova M.V., Peterkova V.A., Galstyan G.R., Ibragimova L.I., Klimontov V.V., Laptev D.N., Malaya I.P., Shestakova E.A. The illusion of accuracy: a critical analysis of continuous glucose monitoring systems quality assessment methods. Diabetes mellitus. 2025;28(3):231-239. (In Russ.) https://doi.org/10.14341/DM13329

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).