Preview

Diabetes mellitus

Advanced search

The illusion of accuracy: a critical analysis of continuous glucose monitoring systems quality assessment methods

https://doi.org/10.14341/DM13329

Abstract

Continuous glucose monitoring (CGM) has been established as a method for self-assessment glucose levels in individuals with diabetes mellitus in the Russian Federation for more than 15 years. The main characteristics of CGM sensors are its’ accuracy and performance that ensure their effectiveness and safety. Currently, there are no standardized guidelines that outline the minimum accuracy standards for CGM systems.

This review is aimed to codify the current methods for evaluating CGMs accuracy and performance across the different countries, as well as to propose local Russian guidelines on CGM device accuracy evaluation. This involves guidelines for the design of clinical trials to assess sensors accuracy and the minimum acceptable performance requirements for CGM devices to be utilized in clinical settings.

About the Authors

M. V. Shestakova
Endocrinology Research Centre
Russian Federation

Marina V. Shestakova - MD, PhD, Professor, Academician of the RAS.

11 Dm. Ulyanova street, 117292 Moscow

Scopus Author ID 7004195530


Competing Interests:

None



V. A. Peterkova
Endocrinology Research Centre
Russian Federation

Valentina A. Peterkova - PhD, Professor, Academician of the RAS.

Moscow


Competing Interests:

None



G. R. Galstyan
Endocrinology Research Centre
Russian Federation

Gagik R. Galstyan - MD, PhD, Professor.

Moscow


Competing Interests:

None



L. I. Ibragimova
Endocrinology Research Centre
Russian Federation

Liudmila I. Ibragimova - MD, PhD.

Moscow


Competing Interests:

None



V. V. Klimontov
Research Institute of Clinical and Experimental Lymphology — Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Vadim V. Klimontov - MD, PhD, Professor.

Novosibirsk

Researcher ID R-7689-2017; Scopus Author ID 8295977000


Competing Interests:

None



D. N. Laptev
Endocrinology Research Centre
Russian Federation

Dmitry N. Laptev - MD, PhD.

Moscow

Researcher ID O-1826-2013; Scopus Author ID 24341083800


Competing Interests:

None



I. P. Malaya
Endocrinology Research Centre; Pirogov Russian National Research Medical University
Russian Federation

Irina P. Malaya - MD, PhD.

Moscow

Researcher ID AAO-8351-2021; Scopus Author ID 57218705086


Competing Interests:

None



E. A. Shestakova
Endocrinology Research Centre; Russian Medical Academy of Continuous Professional Education
Russian Federation

Ekaterina A. Shestakova - MD, PhD.

Moscow


Competing Interests:

None



References

1. Leelarathna L, Evans ML, Neupane S, et al. Intermittently Scanned Continuous Glucose Monitoring for Type 1 Diabetes. N Engl J Med. 2022;387(16):1477-1487 doi: https://doi.org/10.1056/NEJMoa2205650

2. Bolinder J, Antuna R, Geelhoed-Duijvestijn P, et al. Novel glucose-sensing technology and hypoglycaemia in type 1 diabetes: a multicentre, non-masked, randomized controlled trial. Lancet. 2016;388(10057):2254-2263 doi: https://doi.org/10.1016/S0140-6736(16)31535-5

3. Campbell FM, Murphy NP, Stewart C, et al. Outcomes of using flash glucose monitoring technology by children and young people with type 1 diabetes in a single arm study. Pediatr Diabetes. 2018;19(7):1294-1301 doi: https://doi.org/10.1111/pedi.12735

4. Evans M, Welsh Z, Ells S, Seibold A. The Impact of Flash Glucose Monitoring on Glycaemic Control as Measured by HbA1c: A Meta-analysis of Clinical Trials and Real-World Observational Studies. Diabetes Ther. 2020;11(1):83-95. doi: https://doi.org/10.1007/s13300-019-00720-0

5. Evans M, Welsh Z, Seibold A. Reductions in HbA1c with Flash Glucose Monitoring Are Sustained for up to 24 Months: A Meta-Analysis of 75 Real-World Observational Studies. Diabetes Ther. 2022;13(6):1175-1185. doi: https://doi.org/10.1007/s13300-022-01253-9

6. Fokkert M, van Dijk P, Edens M, et al. Improved well-being and decreased disease burden after 1-year use of flash glucose monitoring (FLARE-NL4). BMJ Open Diabetes Res Care. 2019;7(1):e000809 doi: https://doi.org/10.1136/bmjdrc-2019-000809

7. Wright EE, Jr., Kerr MSD, Reyes IJ, et al. Use of Flash Continuous Glucose Monitoring Is Associated With A1C Reduction in People With Type 2 Diabetes Treated With Basal Insulin or Noninsulin Therapy. Diabetes Spectr. 2021;34(2):184-189 doi: https://doi.org/10.2337/ds20-0069

8. Wright EE, Roberts GJ, Chuang JS, et al. Initiating GLP-1 Therapy in Combination with FreeStyle Libre Provides Greater Benefit Compared with GLP-1 Therapy Alone. Diabetes Technol Ther. 2024;26(10):754-762. doi: https://doi.org/10.1089/dia.2024.0015

9. Yaron M, Roitman E, Aharon-Hananel G, et al. Effect of Flash Glucose Monitoring Technology on Glycemic Control and Treatment Satisfaction in Patients With Type 2 Diabetes. Diabetes Care. 2019;42(7):1178-1184. doi: https://doi.org/10.2337/dc18-0166

10. Laptev DN, Bezlepkina OB, Demina ES, et al. Evaluation of FreeStyle Libre in pediatric t1dm: improved glycemic control, reduction in diabetic ketoacidosis and severe hypoglycemia. Problems of Endocrinology. 2022;68(3):86-92. (In Russ.) doi: https://doi.org/10.14341/probl12877

11. Danne T, Nimri R, Battelino T, et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care. 2017;40(12):1631-1640. doi: https://doi.org/10.2337/dc17-1600

12. Bailey TS, Alva S. Landscape of Continuous Glucose Monitoring (CGM) and Integrated CGM: Accuracy Considerations. Diabetes Technol Ther. 2021;23(S3):S5-S11. doi: https://doi.org/10.1089/dia.2021.0236

13. Mathieu C, Irace C, Wilmot EG, et al. Minimum expectations for market authorization of continuous glucose monitoring devices in Europe-’eCGM’ compliance status. Diabetes Obes Metab. 2025;27(3):1025-1031. doi: https://doi.org/10.1111/dom.16153

14. Pemberton JS, Wilmot EG, Barnard-Kelly K, et al. CGM accuracy: Contrasting CE marking with the governmental controls of the USA (FDA) and Australia (TGA): A narrative review. Diabetes Obes Metab. 2023;25(4):916-939. doi: https://doi.org/10.1111/dom.14962

15. Peterkova VA, Ametov AS, Mayorov AY, et al. The Scientific Advisory board resolution: Implementation of intermittently scanned Continuous Glucose monitoring in clinical practice to improve glycemic control. Diabetes mellitus. 2021;24(2):185-192. (In Russ.) doi: https://doi.org/10.14341/DM12753

16. Clinical and Laboratory Standards Institute (CLSI). Performance Metrics for Continuous Interstitial Glucose Monitoring (CLSI Guideline POCT05). 2nd ed. Wayne, PA: CLSI; 2020

17. Momynaliev KT, Prokopyev MV, Ivanov IV. On Standardization and Evaluation of Continuous Glucose Monitoring Systems. Measurement Standards. Reference Materials. 2023;19(5):113-125. (In Russ.) doi: https://doi.org/10.20915/2077-1177-2023-19-5-113-125

18. Ajjan RA, Cummings MH, Jennings P, et al. Accuracy of flash glucose monitoring and continuous glucose monitoring technologies: Implications for clinical practice. Diab Vasc Dis Res. 2018;15(3):175-184 doi: https://doi.org/10.1177/1479164118756240

19. Vigersky RA, Shin J. The Myth of MARD (Mean Absolute Relative Difference): Limitations of MARD in the Clinical Assessment of Continuous Glucose Monitoring Data. Diabetes Technol Ther. 2024;26(S3):38-44. doi: https://doi.org/10.1089/dia.2023.0435

20. Zhu J, Volkening LK, Laffel LM. Distinct Patterns of Daily Glucose Variability by Pubertal Status in Youth With Type 1 Diabetes. Diabetes Care. 2020;43(1):22-28 doi: https://doi.org/10.2337/dc19-0083

21. Heinemann L, Schoemaker M, Schmelzeisen-Redecker G, et al. Benefits and Limitations of MARD as a Performance Parameter for Continuous Glucose Monitoring in the Interstitial Space. J Diabetes Sci Technol. 2020;14(1):135-150 doi: https://doi.org/10.1177/1932296819855670

22. Klonoff DC, Gabbay M, Moon SJ, Wilmot EG. Importance of FDA-Integrated Continuous Glucose Monitors to Ensure Accuracy of Continuous Glucose Monitoring. J Diabetes Sci Technol. 2024:19322968241250357 doi: https://doi.org/10.1177/19322968241250357

23. Freckmann G, Eichenlaub M, Waldenmaier D, et al. Clinical Performance Evaluation of Continuous Glucose Monitoring Systems: A Scoping Review and Recommendations for Reporting. J Diabetes Sci Technol. 2023;17(6):1506-1526 doi: https://doi.org/10.1177/19322968231190941

24. Dedov II, Shestakova MV, Maiorov AY, et al. Klinicheskie rekomendatsii. Sakharnyi diabet 1 tipa u vzroslykh (2022 g). Available from: https://cr.minzdrav.gov.ru/preview-cr/286_2 (In Russ.)

25. Dedov II, Shestakova MV, Maiorov AY, et al. Klinicheskie rekomendatsii. Sakharnyi diabet 2 tipa u vzroslykh (2022 g). Available from: https://cr.minzdrav.gov.ru/preview-cr/290_2 (In Russ.)

26. Peterkova VA, Shestakova MV, Bezlepkina OB, et al. Klinicheskie rekomendatsii. Sakharnyi diabet 1 tipa u detei (2022). Available from: https://cr.minzdrav.gov.ru/preview-cr/287_3 (In Russ.)

27. Food and Drug Administration (FDA) [Internet]. Classification of the integrated continuous glucose monitoring system. Federal register February 18. 2022 [accessed 28 Feb 2025]. Available from: https://www.federalregister.gov/documents/2022/02/18/2022-03504/medical-devices-clinicalchemistry-and-clinical-toxicology-devices-classification-ofthe-integrated


Supplementary files

1. Figure 1. Minimum accuracy requirements for continuous glucose monitoring systems proposed by the European Expert Panel [13].
Subject
Type Исследовательские инструменты
View (569KB)    
Indexing metadata ▾

Review

For citations:


Shestakova M.V., Peterkova V.A., Galstyan G.R., Ibragimova L.I., Klimontov V.V., Laptev D.N., Malaya I.P., Shestakova E.A. The illusion of accuracy: a critical analysis of continuous glucose monitoring systems quality assessment methods. Diabetes mellitus. 2025;28(3):231-239. (In Russ.) https://doi.org/10.14341/DM13329

Views: 81


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)