Preview

Diabetes mellitus

Advanced search

Cardiodiabetology: Evolution or Revolution?

https://doi.org/10.14341/DM13295

Abstract

This article addresses contemporary issues in endocrine cardiology. The main content of the work is an analysis of the history of medications used in diabetology, ranging from the first animal-derived insulins to modern sodium-glucose cotransporter 2 inhibitors (SGLT2 inhibitors) and glucagon-like peptide-1 receptor agonists (GLP-1 RA), which possess pronounced cardioprotective activity. Studies demonstrating their effectiveness in influencing the cardiovascular system in patients with type 2 diabetes mellitus (T2DM) are analyzed. Particular attention is paid to multicenter clinical trials that studied the effect of hypoglycemia on cardiovascular outcomes in patients with T2DM. The article also summarizes the scientific and practical experience of using SGLT2 inhibitors in patients with various cardiac arrhythmias, including those that are life-threatening for patients with T2DM.

About the Authors

I. Z. Bondarenko
Endocrinology Research Centre
Russian Federation

Irina Z. Bondarenko, MD, PhD

11 Dm. Ulyanova street, 117036 Moscow



V. Y. Kalashnikov
Endocrinology Research Centre
Russian Federation

Victor Y. Kalashnikov, MD, PhD, Professor

11 Dm. Ulyanova street, 117036 Moscow



References

1. McKee PA, Castelli WP, McNamara PM, Kannel WB. The natural history of congestive heart failure: the Framingham study. N Engl J Med. 1971;285(26):1441-1446. doi: https://doi.org/10.1056/NEJM197112232852601

2. Preiss D, Zetterstrand S, McMurray JJ, et al. Predictors of development of diabetes in patients with chronic heart failure in the Candesartan in Heart Failure Assessment of Reduction in Mortality and Morbidity (CHARM) program. Diabetes Care. 2009;32(5):915-920. doi: https://doi.org/10.2337/dc08-1709

3. Kristensen SL, Preiss D, Jhund PS, et al. Risk Related to Pre-Diabetes Mellitus and Diabetes Mellitus in Heart Failure With Reduced Ejection Fraction: Insights From Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure Trial. Circ Heart Fail. 2016;9(1):e002560. doi: https://doi.org/10.1161/CIRCHEARTFAILURE.115.002560

4. Kristensen SL, Jhund PS, Lee MMY, et al. Prevalence of Prediabetes and Undiagnosed Diabetes in Patients with HFpEF and HFrEF and Associated Clinical Outcomes. Cardiovasc Drugs Ther. 2017;31(5-6):545-549. doi: https://doi.org/10.1007/s10557-017-6754-x

5. Marre M, Lievre M, Chatellier G, et al. Effects of low dose ramipril on cardiovascular and renal outcomes in patients with type 2 diabetes and raised excretion of urinary albumin: randomised, double blind, placebo controlled trial (the DIABHYCAR study) [published correction appears in BMJ. 2004 Mar 20;328(7441):686]. BMJ. 2004;328(7438):495. doi: https://doi.org/10.1136/bmj.37970.629537.0D

6. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes [published correction appears in N Engl J Med. 2007 Jul 5;357(1):100.]. N Engl J Med. 2007;356(24):2457-2471. doi: https://doi.org/10.1056/NEJMoa072761

7. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group [published correction appears in Lancet 1998 Nov 7;352(9139):1558]. Lancet. 1998;352(9131):854-865

8. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279-1289. doi: https://doi.org/10.1016/S0140-6736(05)67528-9

9. Kernan WN, Viscoli CM, Furie KL, et al. Pioglitazone after Ischemic Stroke or Transient Ischemic Attack. N Engl J Med. 2016;374(14):1321-1331. doi: https://doi.org/10.1056/NEJMoa1506930

10. Schmidt MR, Smerup M, Konstantinov IE, et al. Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: first demonstration of remote ischemic perconditioning. Am J Physiol Heart Circ Physiol. 2007;292(4):H1883-H1890. doi: https://doi.org/10.1152/ajpheart.00617.2006

11. Malmberg K, Rydén L, Hamsten A, Herlitz J, Waldenström A, Wedel H. Mortality prediction in diabetic patients with myocardial infarction: experiences from the DIGAMI study [published correction appears in Cariovasc Res 1997 Dec;36(3):460]. Cardiovasc Res. 1997;34(1):248-253. doi: https://doi.org/10.1016/s0008-6363(96)00263-5

12. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891-975. doi: https://doi.org/10.1002/ejhf.592

13. Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317-1326. doi: https://doi.org/10.1056/NEJMoa1307684

14. Standards of medical care in diabetes — 2015: summary of revisions. Diabetes Care. 2015;38Suppl:S4. doi: https://doi.org/10.2337/dc15-S003

15. Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N Engl J Med. 2015;373(23):2247-2257. doi: https://doi.org/10.1056/NEJMoa1509225

16. Buse JB; the LEADER Steering Committee. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375(18):1798-1799. doi: https://doi.org/10.1056/NEJMc1611289

17. Marso SP, Bain SC, Consoli A, et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2016;375(19):1834-1844. doi: https://doi.org/10.1056/NEJMoa1607141

18. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117-2128. doi: https://doi.org/10.1056/NEJMoa1504720

19. Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney DZI. Sodium Glucose Cotransporter-2 Inhibition in Heart Failure: Potential Mechanisms, Clinical Applications, and Summary of Clinical Trials. Circulation. 2017;136(17):1643-1658. doi: https://doi.org/10.1161/CIRCULATIONAHA.117.030012

20. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure [published correction appears in Eur Heart J. 2021 Dec 21;42(48):4901. doi: 10.1093/eurheartj/ehab670]. Eur Heart J. 2021;42(36):3599-3726. doi: https://doi.org/10.1093/eurheartj/ehab368

21. Zeppenfeld K, Tfelt-Hansen J, de Riva M, et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J. 2022;43(40):3997-4126. doi: https://doi.org/10.1093/eurheartj/ehac262

22. Packer M. What causes sudden death in patients with chronic heart failure and a reduced ejection fraction? Eur Heart J. 2020;41(18):1757-1763. doi: https://doi.org/10.1093/eurheartj/ehz553

23. Ferrannini E, Baldi S, Frascerra S, et al. Shift to Fatty Substrate Utilization in Response to Sodium-Glucose Cotransporter 2 Inhibition in Subjects Without Diabetes and Patients With Type 2 Diabetes. Diabetes. 2016;65(5):1190-1195. doi: https://doi.org/10.2337/db15-1356

24. Ferrannini E, Muscelli E, Frascerra S, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients [published correction appears in J Clin Invest. 2014 Apr 1;124(4):1868]. J Clin Invest. 2014;124(2):499-508. doi: https://doi.org/10.1172/JCI72227

25. Liao J, Ebrahimi R, Ling Z, et al. Effect of SGLT-2 inhibitors on arrhythmia events: insight from an updated secondary analysis of > 80,000 patients (the SGLT2i-Arrhythmias and Sudden Cardiac Death). Cardiovasc Diabetol. 2024;23(1):78. doi: https://doi.org/10.1186/s12933-024-02137-x

26. Habibi J, Aroor AR, Sowers JR, et al. Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes. Cardiovasc Diabetol. 2017;16(1):9. doi: https://doi.org/10.1186/s12933-016-0489-z

27. Sato T, Aizawa Y, Yuasa S, et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc Diabetol. 2018;17(1):6. doi: https://doi.org/10.1186/s12933-017-0658-8

28. Curtain JP, Docherty KF, Jhund PS, et al. Effect of dapagliflozin on ventricular arrhythmias, resuscitated cardiac arrest, or sudden death in DAPA-HF. Eur Heart J. 2021;42(36):3727-3738. doi: https://doi.org/10.1093/eurheartj/ehab560

29. Dedov II, Shestakova MV, Mayorov AY, et al. Standards of Specialized Diabetes Care / Edited by Dedov I.I., Shestakova M.V., Mayorov A.Yu. 11th Edition. Diabetes mellitus. 2023;26(2S):1-157. (In Russ.) doi: https://doi.org/10.14341/DM13042

30. American Diabetes Association Professional Practice Committee; Introduction and Methodology: Standards of Care in Diabetes—2025. Diabetes Care. 2025;48(S1):S1–S5. doi: https://doi.org/10.2337/dc25-SINT


Supplementary files

1. Figure 1. Evolution of glucose-lowering therapy over the past 100 years.
Subject
Type Исследовательские инструменты
View (191KB)    
Indexing metadata ▾

Review

For citations:


Bondarenko I.Z., Kalashnikov V.Y. Cardiodiabetology: Evolution or Revolution? Diabetes mellitus. 2025;28(1):38-45. (In Russ.) https://doi.org/10.14341/DM13295

Views: 591


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)