Preview

Diabetes mellitus

Advanced search

Psychoorganic syndrome in type 1 diabetes mellitus: a concomitant disease or a complication of diabetes? (Review)

https://doi.org/10.14341/DM13294

Abstract

Psychoorganic syndrome (POS), also known as organic brain syndrome, or encephalopathy, is characterized by cognitive decline, emotional incontinence (emotional lability), and asthenic symptoms. It can develop due to a number of exogenous and endogenous factors, and despite the use of the term «diabetic encephalopathy», the evidence for a specific diabetic etiology of POS remains limited. The review provides a detailed history of the term POS and its definition, components and possible causes, pros and cons of the existence of POS of diabetic origin. The potential influence of dysglycemia on the development of POS and brain abnormalities in Type 1 diabetic patients (T1D) found at neuroimaging, as well as their associations between each other and with other clinical parameters, including the age at diabetes manifestation, disease duration, acute diabetic complications, and diabetic retinopathy as a marker of a long-term exposure to hyperglycemia, are discussed. In young adults with T1DM, cognitive function parameters fall within the age-related reference ranges, and their associations with the degree of hyperglycemia or severe hypoglycemia are not reproducible in larger samples. The analysis of neuroimaging and histological data also does not provide convincing evidence that brain abnormalities are unique to T1DM. Thus, the issue of POS (encephalopathy) in T1DM remains insufficiently studied and controversial. Current data does not allow to unequivocally accept the specific diabetic nature of POS/encephalopathy in T1D. Further studies are necessary to identify the contribution of diabetes and associated factors to the development of POS, including histological data.

About the Authors

E. G. Starostina
Moscow Regional Clinical and Research Institute
Russian Federation

Elena G. Starostina - MD, PhD, Professor.

Moscow

ResearcherID C-9409-2014; Scopus Author ID 7003980023


Competing Interests:

None



T. S. Kotova
Moscow Regional Clinical and Research Institute
Russian Federation

Tatyana S. Kotova - PhD student.

61/2, Schepkina street, 129110 Moscow


Competing Interests:

None



References

1. Lachin JM, Nathan DM; DCCT/EDIC Research Group. Understanding metabolic memory: the prolonged influence of glycemia during the Diabetes Control and Complications Trial (DCCT) on future risks of complications during the study of the Epidemiology of Diabetes Interventions and Complications (EDIC). Diabetes Care. 2021;44(10):2216-24. doi: https://doi.org/10.2337/dc20-3097

2. Starostina EG, Volodina MN. Rol' komplaentnosti v vedenii bol'nyh diabetom. RMJ. 2015;8:477. (In Russ).

3. Tiganov AS, red. Psihiatriya: rukovodstvo dlya vrachej. V dvuh tomah. M.: Medicina; 2012 (In Russ).

4. Dedov II, Shestakova MV, Mayorov AY, et al. Standards of Specialized Diabetes Care / Edited by Dedov I.I., Shestakova M.V., Mayorov A.Yu. 11th Edition. Diabetes mellitus. 2023;26(2S):1-157. (In Russ.) doi: https://doi.org/10.14341/DM13042

5. American Diabetes Association Professional Practice Committee. 12. Retinopathy, neuropathy, and foot care: Standards of care in diabetes-2024. Diabetes Care. 2024;47(Suppl 1):S231-S243. doi: https://doi.org/10.2337/dc24-S012

6. Korkina MV, Lakosina ND, Lichko AE, Sergeev II. Psihiatriya. M.: Medpress-inform; 2006. - 576 p. (In Russ.)

7. Dmitrieva TB. Psihiatriya. Nacional'noe rukovodstvo. Kratkoe izdanie / pod red. T.B. Dmitrievoj, V.N. Krasnova, N. G. Neznanova, V.YA. Semke, A.S. Tiganova; M.: GEOTAR-Media, 2021. - 624 p. (In Russ.)

8. Bleuler E. Lehrbuch der Psychiatrie. Berlin: Julius Springer Verlag, 1916

9. Walther-Buel H. Die Psychiatrie der HirngeschwQlste und die cerebralen Grundlagen psychischer Vorgange [Psychiatry of brain tumors and the cerebral bases of psychical processes]. Acta Neurochir Suppl (Wien). 1951;2:1-226

10. Piven' BN, Sheremet'eva II, Leshchenko LV, et al. Nekotorye itogi izucheniya ekzogenno-organicheskih zabolevanij golovnogo mozga. Social'naya i klinicheskaya psihiatriya. 2011; 21: 94-99. (In Russ.)

11. Piven' BN. Psihoorganicheskij sindrom: definicii i smyslovoe napolnenie. Psihiatriya, psihoterapiya i klinicheskaya psihologiya. 2015;21(3):122-129 (In Russ.)

12. Churkin AA. Prakticheskoe rukovodstvo po primeneniyu MKB-10 v psihiatrii i narkologii / A. A. Churkin, A. N. Martyushov. — Moskva : GNC SiSP im. V. P. Serbskogo, 2010. - 132 s. : il.; 30 sm. (In Russ.)

13. Zharikov NM, Gindikin VY. Rasprostranennost' pogranichnyh psihicheskih rasstrojstv sredi lic, ne nahodyashchihsya pod nablyudeniem psihiatricheskih uchrezhdenij. Epidemiologiya i organizaciya nevrologicheskoj ipsihiatricheskojpomoshchi. 2002;7:45-49. (In Russ.)

14. Piven' BN, Primochenok AA. O rasprostranennosti ekzogenno-organicheskih zabolevanij golovnogo mozga v obshchej strukture psihicheskoj patologii u podrostkov. Rossijskij psihiatricheskij zhurnal. 2009;5:81-84. (In Russ.)

15. Prokudin VN. Pyatiletnij opyt organizacii psihoterapevticheskoj, psihiatricheskoj i narkologicheskoj pomoshchi v somaticheskoj bol'nice. Social'naya i klinicheskaya psihiatriya. 2005;15(2):73-78. (In Russ.)

16. Prokudin V.N. 12-letnij opyt organizacii psihoterapevticheskoj i psihologicheskoj pomoshchi somaticheskim bol'nym s pogranichnymi psihicheskimi rasstrojstvami v mnogoprofil'noj bol'nice. Nezavisimyj psihiatricheskij zhurnal. 2011;1:68-74. (In Russ.)

17. Kazakovceva BA, Gollanda VB. Psihicheskie rasstrojstva i rasstrojstva povedeniya (F00 - F99). (Klass V MKB-10, adaptirovannyj dlya ispol'zovaniya v Rossijskoj Federacii). M.: Minzdrav Rossii, 1998. 512 p. (In Russ.)

18. Klassifikaciya boleznej v psihiatrii i narkologii. Posobie dlya vrachej. Pod red. M.M. Milevskogo. M.: izdatel'stvo «Triada-H», 2024. 184 p. (In Russ.)

19. Sychyova MA, Sergeeva IG, Tulupov AA. Organicheskie porazheniya golovnogo mozga. Uchebnoe posobie. Novosib gos u-t. . Novosibirsk. RIC NGU - 2015, 32 p. (In Russ.)

20. Ryan CM. Why is cognitive dysfunction associated with the development of diabetes early in life? The diathesis hypothesis. PediatrDiabetes. 2006;7(5):289-97. doi: https://doi.org/10.1111/j.1399-5448.2006.00206.x.

21. Liu Y, Li M, Zhang Z, Ye Y, Zhou J. Role of microglia-neuron interactions in diabetic encephalopathy. Ageing Res Rev. 2018;42:28-39. doi: https://doi.org/10.1016/jarr.2017.12.005

22. Mijnhout GS, Scheltens P, Diamant M, et al. Diabetic encephalopathy: A concept in need of a definition. Diabetologia. 2006;49(6):1447-8. doi: https://doi.org/10.1007/s00125-006-0221-8

23. De Jong RN. The nervous system complications in diabetes mellitus with special reference to cerebrovascular changes. J Nerv Ment Dis. 1950;111:181-206

24. Bodechtel G, Erbslöh F. Die Veränderungen des Zentralervensystems beim Diabetes mellitus. In: Henke F., Lubarsch O, Rossle R. Hdb. d. spez. path. Anat. u. Histol. 13/2, 1717-1739. Berlin, Gottingen, Heidelberg: Springer 1958.Reske-Nielsen E, 1965

25. Reske-Nielsen E, Lundbak K, Rafaelsen OJ. Pathological changes in the central and peripheral nervous system of young longterm diabetics: I. Diabetic encephalopathy. Diabetologia. 1966;1(3-4):233-241. doi: https://doi.org/10.1007/BF01257917

26. Roy S, Kim D. Retinal capillary basement membrane thickening: Role in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res. 2021;82:100903. doi: https://doi.org/10.1016/j.preteyeres.2020.100903

27. Scheibel AB, Duong TH, Jacobs R. Alzheimer's disease as a capillary dementia. Ann Med. 1989;21(2):103-7. doi: https://doi.org/10.3109/07853898909149194

28. Uranova NA, Zimina IS, Vikhreva OV, Krukov NO, Rachmanova VI, Orlovskaya DD. Ultrastructural damage of capillaries in the neocortex in schizophrenia. World J Biol Psychiatry. 2010;1 1(3):567-78. doi: https://doi.org/10.3109/15622970903414188

29. Пауков В.С. Патологическая анатомия. Т. 1.: учебник в 2 т. / под ред. Паукова В.С. — Москва: ГЭОТАР-Медиа, 2020. - 720 с. [Paukov VS. Patologicheskaya anatomiya. T. 1. : uchebnik v 2 t. / pod red. Paukova V. S. - Moskva : GEOTAR-Media, 2020. - 720 s. (In Russ.)]

30. Akyol A, Kiylioglu N, Bolukbasi O, Guney E, Yurekli Y. Repeated hypoglycemia and cognitive decline. A case report. Neuro Endocrinol Lett. 2003;24(1-2):54-6

31. Mohseni S. Hypoglycemic neuropathy. Acta Neuropathol. 2001;102(5):413-21. doi: https://doi.org/10.1007/s004010100459

32. Chen R, Shi J, Yin Q, et al. Morphological and pathological characteristics of brain in diabetic encephalopathy. J Alzheimers Dis. 2018;65(1):15-28. doi: https://doi.org/10.3233/JAD-180314

33. Mihajlichenko TE. Morfologicheskie izmeneniya golovnogo mozga pri diabeticheskoj encefalopatii. Mezhdunarodnyi endokrinologicheskiizhurnal. 2017;13(7):506-514. (In Russ.)

34. DeFronzo RA, Ferrannini E, Zimmet P, Alberti G. International Textbook of Diabetes Mellitus, 2 Volume Set, 4th Edition. 2015. Wiley-Blackwell, 1248

35. Berger M, Diabetes mellitus 2nd Edition, 2000, Urban und Fischer, 882 S

36. Dedov II. Saharnyj diabet: ostrye i hronicheskie oslozhneniya. Pod redakciej I.I. Dedova, M.V. SHestakovoj. M.: OOO «Izdatel'stvo «Medicinskoe izdatel'skoe agentstvo», 2011 g. - 480 p. (In Russ.)

37. Holt RIG, Flyvbjerg A, Goldstein B. Textbook of diabetes. 6th ed. Wiley-Blackwell, 2024, 1232. doi: https://doi.org/10.1002/9781119697473.ch45

38. Morgunov LY. Diabeticheskaya encefalopatiya: kak pravil'no postavit' diagnoz? MedVedomosti. 2022. (In Russ.) Доступно по: https://www. medvedomosti.media/articles/diabeticheskaya-entsefalopatiya-kak-pravilno-postavit-diagnoz/?sphrase_id=261705. Ссылка активна на 02.01.2025

39. Kalinin AP, Kotov SV, Rudakova IG. Nevrologicheskie rasstrojstva pri endokrinnyh zabolevaniyah. Moscow: MIA, 2009. (In Russ.)

40. Kotov SV, Rudakova IG, Isakova EV. Encefalopatiya u bol'nyh saharnym diabetom II tipa. Klinika i lechenie. Nevrologicheskijzhurnal. 2001;3:35-37. (In Russ.)

41. Sivcova AA, Simonova VG. Diabeticheskaya encefalopatiya kak prichina razvitiya kognitivnyh narushenij. Mezhdunarodnyj studencheskij nauchnyj vestnik. 2023;2. (In Russ.)

42. Strokov IA, Zaharov VV, Strokov KI. Diabeticheskaya encefalopatiya. Sovremennoe sostoyanie problemy. Doktor.ru. 2013;85(7):29-35. (In Russ.)

43. Levin OS, Babkina OV. Cerebrum diabeticum: sushchestvuet li diabeticheskaya encefalopatiya? Effektivnaya farmakoterapiya. Endokrinologiya. 2016;3:29. (In Russ.)

44. Kellar D, Craft S. Brain insulin resistance in Alzheimer's disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 2020;19(9):758-766. doi: https://doi.org/10.1016/S1474-4422(20)30231-3

45. Matveeva MV, Samojlova YG, Zhukova NG, et al. Taupatiya i kognitivnye narusheniya pri eksperimental'nom saharnom diabete. Saharnyj diabet. 2017;20(3):181-184. (In Russ.)

46. Gabbouj S, Ryhanen S, Marttinen M, et al. Altered insulin signaling in Alzheimer's disease brain - special emphasis on PI3K-Akt pathway. FrontNeurosci. 2019;13:629. doi: https://doi.org/10.3389/fnins.2019.00629

47. Guo Z, Chen Y, Mao YF, et al. Long-term treatment with intranasal insulin ameliorates cognitive impairment, tau hyperphosphorylation, and microglial activation in a streptozotocin-induced Alzheimer's rat model. Sci Rep. 2017;7:45971. doi: https://doi.org/10.1038/srep45971

48. Qu Z, Jiao Z, Sun X, et al. Effects of streptozotocin-induced diabetes on tau phosphorylation in the rat brain. Brain Res. 2011;1383:300-6. doi: https://doi.org/10.1016/j.brainres.2011.01.084

49. Jolivalt CG, Hurford R, Lee CA, et al. Type 1 diabetes exaggerates features of Alzheimer's disease in APP transgenic mice. Exp Neurol. 2010;223(2):422-31. doi: https://doi.org/10.1016/j.expneurol.2009.11.005

50. Li ZG, Sima AA. C-peptide and central nervous system complications in diabetes. Exp Diabesity Res. 2004;5(1):79-90. doi: https://doi.org/10.1080/15438600490424550

51. Hyllienmark L, Maltez J, Dandenell A, et al. EEG abnormalities with and without relation to severe hypoglycaemia in adolescents with type 1 diabetes. Diabetologia. 2005;48(3):412-9. doi: https://doi.org/10.1007/s00125-004-1666-2

52. Brands AM, Kessels RP, de Haan EH, et al. Cerebral dysfunction in type 1 diabetes: effects of insulin, vascular risk factors and blood-glucose levels. Eur J Pharmacol. 2004;490(1-3):159-68. doi: https://doi.org/10.1016/j.ejphar.2004.02.053

53. Rechenberg K, Whittemore R, Grey M. Anxiety in Youth With Type 1 Diabetes. J Pediatr Nurs. 2017;32:64-71. doi: https://doi.org/10.1016/j.pedn.2016.08.007

54. Starostina EG, Moshnyaga EN, Volodina MN, Malakhova T.S. Epidemiology of the most common mental disorders in patients with diabetes mellitus. Al'manah klinicheskoj mediciny. 20/4,32:17-23. (In Russ.)

55. Silveira MSVM, Moura Neto A, Sposito AC, et al. Low empowerment and diabetes regimen distress are related to HbA1c in low income type 1 diabetes patients in a Brazilian tertiary public hospital. DiabetolMetab Syndr. 2019;11:6. doi: https://doi.org/10.1186/s13098-019-0404-3

56. Trief PM, Xing D, Foster NC, et al. T1D Exchange Clinic Network. Depression in adults in the T1D Exchange Clinic Registry. Diabetes Care. 2014;37(6):1563-72. doi: https://doi.org/10.2337/dc13-1867

57. Kampling H, Petrak F, Farin E, et al. Trajectories of depression in adults with newly diagnosed type 1 diabetes: results from the German Multicenter Diabetes Cohort Study. Diabetologia. 2017;60(1):60-68. doi: https://doi.org/10.1007/s00125-016-4123-0

58. Avedisova AS. Terapiya astenicheskih sostoyanij. Farmacevticheskij vestnik. 2003;282:15-6. (In Russ.)

59. Putilina MV. Osobennosti terapii astenicheskih rasstrojstv. Consilium medicum. Nevrologiya. 2010;1:30-5. (In Russ.)

60. Il'nickij AN, Proshchaev KI, Avdeeva IV. Kognitivnaya asteniya i profilaktika ee progressirovaniya: focus na pitanie. Moskva, 2020. 61 s. (In Russ.)

61. Johnston S, Brenu EW, Staines D, Marshall-Gradisnik S. The prevalence of chronic fatigue syndrome/ myalgic encephalomyelitis: a meta-analysis. Clin Epidemiol. 2013;5:105-10. doi: https://doi.org/10.2147/CLEP.S39876

62. Lim EJ, Ahn YC, Jang ES, et al. Systematic review and metaanalysis of the prevalence of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). JTranslMed. 2020;18(1):100. doi: https://doi.org/10.1186/s12967-020-02269-0

63. Luriya AR. Mozg cheloveka i psihicheskie processy: v 2 t. - T. 1. Nejropsihologicheskie issledovaniya. - M.: Pedagogika, 1963; T. 2. Nejropsihologicheskij analiz soznatel'noj deyatel'nosti. - M.: Pedagogika, 1970. (In Russ.)

64. Petersen RC, Lopez O, Armstrong MJ, et al. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2018;90(3):126-135. doi: https://doi.org/10.1212/WNL.0000000000004826

65. Yahno NN, Lokshina AB, Zaharov VV, et al. Sindrom umerennyh kognitivnyh rasstrojstv v rossijskoj populyacii. Zhurnal nevrologii i psihiatrii im. S.S. Korsakova. 2019;119(5-2):179-80. (In Russ.)

66. Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol. 2018;14(10):591-604. doi: https://doi.org/10.1038/s41574-018-0048-7

67. Smolina K, Wotton CJ, Goldacre MJ. Risk of dementia in patients hospitalised with type 1 and type 2 diabetes in England, 1998-2011: a retrospective national record linkage cohort study. Diabetologia. 2015;58(5):942-950. doi: https://doi.org/10.1007/s00125-015-3515-x

68. Wium-Andersen IK, Rungby J, Jorgensen MB, Sandbak A, Osler M, Wium-Andersen MK. Risk of dementia and cognitive dysfunction in individuals with diabetes or elevated blood glucose. Epidemiol PsychiatrSci. 2019;29:e43. Published 2019 Aug 28. doi: https://doi.org/10.1017/S2045796019000374

69. Garfield V, Farmaki AE, Fatemifar G, et al. Relationship between glycemia and cognitive function, structural brain outcomes, and dementia: A Mendelian randomization study in the UK Biobank. Diabetes. 2021;70(10):2313-2321. doi: https://doi.org/10.2337/db20-0895

70. Gilsanz P, Schnaider Beeri M, Karter AJ, et al. Depression in type 1 diabetes and risk of dementia. Aging Ment Health. 2019;23(7):880-886. doi: https://doi.org/10.1080/13607863.2018.1455167

71. Whitmer RA, Gilsanz P Quesenberry CP, et al. Association of Type 1 diabetes and hypoglycemic and hyperglycemic events and risk of dementia. Neurology. 2021;97(3):e275-83. doi: https://doi.org/10.1212/WNL.0000000000012243

72. Lacy ME, Gilsanz P Eng C, et al. Severe hypoglycemia and cognitive function in older adults with Type 1 diabetes: The Study of Longevity in Diabetes (SOLID). Diabetes Care. 2020;43(3):541-548. doi: https://doi.org/10.2337/dc19-0906

73. Lacy ME, Gilsanz P, Eng CW, et al. Recurrent diabetic ketoacidosis and cognitive function among older adults with type 1 diabetes: findings from the Study of Longevity in Diabetes. BMJ Open Diabetes Res Care. 2020;8(1):e001173. doi: https://doi.org/10.1136/bmjdrc-2020-001173

74. Gonzalez Kelso I, Tadi P Cognitive Assessment. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. https://www.ncbi.nlm.nih.gov/books/NBK556049

75. Zochodne D, Kline G, Smith EE, Hill MD. Diabetic Neurology. CRC Press, 2016. р126-131. doi: https://doi.org/10.3109/9781420085549

76. Kramer L, Fasching P Madl C, et al. Previous episodes of hypoglycemic coma are not associated with permanent cognitive brain dysfunction in IDDM patients on intensive insulin treatment. Diabetes. 1998;47(12):1909-14. doi: https://doi.org/10.2337/diabetes.47.12.1909

77. Schoenle EJ, Schoenle D, Molinari L, Largo RH. Impaired intellectual development in children with Type I diabetes: association with HbA(1c), age at diagnosis and sex. Diabetologia. 2002;45(1):108-14. doi: https://doi.org/10.1007/s125-002-8250-6

78. Brands AM, Biessels GJ, de Haan EH, et al. The effects of type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care. 2005;28(3):726-35. doi: https://doi.org/10.2337/diacare.283.726

79. Gaudieri PA, Chen R, Greer TF, Holmes CS. Cognitive function in children with type 1 diabetes: a meta-analysis. Diabetes Care. 2008;31(9):1892-7. doi: https://doi.org/10.2337/dc07-2132

80. Naguib JM, Kulinskaya E, Lomax CL, Garralda ME. Neurocognitive performance in children with type 1 diabetes-a meta-analysis. JPediatrPsychol. 2009;34(3):271-82. doi: https://doi.org/10.1093/jpepsy/jsn074

81. Blasetti A, Chiuri RM, Tocco AM, et al. The effect of recurrent severe hypoglycemia on cognitive performance in children with type 1 diabetes: a meta-analysis. J Child Neurol. 2011;26(11):1383-91. doi: https://doi.org/10.1177/0883073811406730

82. Tonoli C, Heyman E, Roelands B, et al. Type 1 diabetes-associated cognitive decline: a meta-analysis and update of the current literature. J Diabetes. 2014;6(6):499-513. doi: https://doi.org/10.1111/1753-0407.12193

83. He J, Ryder AG, Li S, et al. Glycemic extremes are related to cognitive dysfunction in children with type 1 diabetes: A meta-analysis. J Diabetes Investig. 2018;9(6):1342-1353. doi: https://doi.org/10.1111/jdi.12840

84. Moheet A, Mangia S, Seaquist ER. Impact of diabetes on cognitive function and brain structure. Ann N Y Acad Sci. 2015;1353:60-71. doi: https://doi.org/10.1111/nyas.12807

85. Li W, Huang E, Gao S. Type 1 Diabetes Mellitus and cognitive impairments: a systematic review. J Alzheimers Dis. 2017;57(1):29-36. doi: https://doi.org/10.3233/JAD-161250

86. Hardigan T, Ward R, Ergul A. Cerebrovascular complications of diabetes: focus on cognitive dysfunction. Clin Sci (Lond). 2016;130(20):1807-22. doi: https://doi.org/10.1042/CS20160397

87. Ly TT, Anderson M, McNamara KA, et al. Neurocognitive outcomes in young adults with early-onset type 1 diabetes: a prospective follow-up study. Diabetes Care. 2011;34(10):2192-7. doi: https://doi.org/10.2337/dc11-0697

88. Graveling AJ, Deary IJ, Frier BM. Acute hypoglycemia impairs executive cognitive function in adults with and without type 1 diabetes. Diabetes Care. 2013;36(10):3240-6. doi: https://doi.org/10.2337/dc13-0194

89. Guardia-Olmos J, Gallardo-Moreno GB, Gudayol-Ferre E, et al. Effect of verbal task complexity in a working memory paradigm in patients with type 1 diabetes. A fMRI study. PLoSOne. 2017;12(6):e0178172. doi: https://doi.org/10.1371/journal.pone.0178172

90. Weinger K, Jacobson AM, Musen G, et al. The effects of type 1 diabetes on cerebral white matter. Diabetologia. 2008;51(3):417-25. doi: https://doi.org/10.1007/s00125-007-0904-9

91. Northam EA, Rankins D, Lin A, et al. Central nervous system function in youth with type 1 diabetes 12 years after disease onset. Diabetes Care. 2009;32(3):445-50. doi: https://doi.org/10.2337/dc08-1657

92. Novoselova MV, Samojlova JG, Zhukova NG, Tonkih OS. Analysis of associative relationships between clinical- metabolic, cognitive disorders and structure brain changes in patients with diabetes mellitus type 1. In the World of Scientific Discoveries. 2015;54(6):191-202. (In Russ.) doi: https://doi.org/10.12731/WSD-2014-6-191-203

93. DCCT/EDIC Study Research Group; Jacobson AM, Musen G, Ryan CM, et al Long-term effect of diabetes and its treatment on cognitive function. N Engl J Med. 2007;356(18):1842-52. doi: https://doi.org/10.1056/NEJMoa066397

94. Samoilova YG, Matveeva MV, Tonkih OS, et al. Interhemispheric asymmetry of the brain in patients with type 1 diabetes mellitus and cognitive impairment. Front Endocrinol (Lausanne). 2022;13:961254. doi: https://doi.org/10.3389/fendo.2022.961254

95. Jacobson AM, Ryan CM, Cleary PA, et al. DCCT/EDIC Research Group. Biomedical risk factors for decreased cognitive functioning in type 1 diabetes: an 18 year follow-up of the Diabetes Control and Complications Trial (DCCT) cohort. Diabetologia. 2011;54(2):245-55. doi: https://doi.org/10.1007/s00125-010-1883-9

96. Biessels GJ, Deary IJ, Ryan CM. Cognition and diabetes: a lifespan perspective. Lancet Neurol. 2008;7(2):184-90. doi: https://doi.org/10.1016/S1474-4422(08)70021-8

97. Ferguson SC, Blane A, Wardlaw J, et al. Influence of an early-onset age of type 1 diabetes on cerebral structure and cognitive function. Diabetes Care. 2005;28:1431-1437. doi: https://doi.org/10.2337/diacare.28.64431

98. Brismar T, Maurex L, Cooray G, et al. Predictors of cognitive impairment in type 1 diabetes. Psychoneuroendocrinology. 2007;32(8-10):1041-51. doi: https://doi.org/10.1016/j.psyneuen.2007.08.002

99. Kaufmann L, Pixner S, Starke M, et al. Neurocognition and brain structure in pediatric patients with type 1 diabetes. Journal of Pediatric Neuroradiology. 2012;01:025-035. doi: https://doi.org/10.3233/PNR-2012-005

100. Ohmann S, Popow C, Rami B, et al. Cognitive functions and glycemic control in children and adolescents with type 1 diabetes. Psychol Med. 2010;40(1):95-103. doi: https://doi.org/10.1017/S0033291709005777

101. Hershey T, Bhargava N, Sadler M, et al. Conventional versus intensive diabetes therapy in children with type 1 diabetes: effects on memory and motor speed. Diabetes Care. 1999;22(8):1318-24. doi: https://doi.org/10.2337/diacare.22.84318

102. Hershey T, Lillie R, Sadler M, White NH. Severe hypoglycemia and long-term spatial memory in children with type 1 diabetes mellitus: a retrospective study. J Int Neuropsychol Soc. 2003;9(5):740-50. doi: https://doi.org/10.1017/S1355617703950077

103. Hershey T, Perantie DC, Warren SL, et al. Frequency and timing of severe hypoglycemia affects spatial memory in children with type 1 diabetes. Diabetes Care. 2005;28(10):2372-7. doi: https://doi.org/10.2337/diacare.28.10.2372

104. Perantie DC, Lim A, Wu J, et al. Effects of prior hypoglycemia and hyperglycemia on cognition in children with type 1 diabetes mellitus. PediatrDiabetes. 2008;9(2):87-95. doi: https://doi.org/10.1111/j.1399-5448.2007.00274.x

105. Barnea-Goraly N, Raman M, Mazaika P, et al. Alterations in white matter structure in young children with type 1 diabetes. Diabetes Care. 2014;37(2):332-40. doi: https://doi.org/10.2337/dc13-1388

106. Kirchhoff BA, Jundt DK, Doty T, Hershey T. A longitudinal investigation of cognitive function in children and adolescents with type 1 diabetes mellitus. Pediatr Diabetes. 2017;18(6):443-449. doi: https://doi.org/10.1111/pedi.12414

107. Strudwick SK, Carne C, Gardiner J, et al. Cognitive functioning in children with early onset type 1 diabetes and severe hypoglycemia. J Pediatr. 2005;147(5):680-685. doi: https://doi.org/10.1016/jjpeds.2005.06.010

108. Northam E, Anderson P Adler R, Werther G, Andrewes D. Neuropsychological complications of insulin dependent diabetes in children. Child Neuropsychol. 1995;1:74-87. doi: https://doi.org/10.1080/09297049508401344

109. Northam EA, Anderson PJ, Werther GA, et al. Neuropsychological complications of IDDM in children 2 years after disease onset. Diabetes Care. 1998;21(3):379-84. doi: https://doi.org/10.2337/diacare.21.3379

110. Northam EA, Anderson PJ, Jacobs R, et al. Neuropsychological profiles of children with type 1 diabetes 6 years after disease onset. Diabetes Care. 2001;24(9):1541-6. doi: https://doi.org/10.2337/diacare.24.9.1541

111. Lin A, Northam EA, Rankins D, et al. Neuropsychological profiles of young people with type 1 diabetes 12 yr after disease onset. Pediatr Diabetes. 2010;11(4):235-43. doi: https://doi.org/10.1111/j.1399-5448.2009.00588.x

112. Ferguson SC, Blane A, Perros P et al. Cognitive ability and brain structure in type 1 diabetes: relation to microangiopathy and preceding severe hypoglycemia. Diabetes. 2003;52:149-156. doi: https://doi.org/10.2337/diabetes.52.1449

113. Dogra V, Mittal B, Senthil Kumaran S, et al. Evaluation of Cognitive Deficits in Adults with Type 1 Diabetes Stratified by the Age of Diabetes Onset: A CrossSectional Study. Adv Ther. 2022;39(4):1711-1723. doi: https://doi.org/10.1007/s12325-022-02063-y

114. Ryan CM, Geckle MO, Orchard TJ. Cognitive efficiency declines over time in adults with Type 1 diabetes: effects of micro- and macrovascular complications. Diabetologia. 2003;46(7):940-8. doi: https://doi.org/10.1007/s00125-003-1128-2

115. van Duinkerken E, Klein M, Schoonenboom NS, et al. Functional brain connectivity and neurocognitive functioning in patients with long-standing type 1 diabetes with and without microvascular complications: a magnetoencephalography study. Diabetes. 2009;58(10):2335-43. doi: https://doi.org/10.2337/db09-0425

116. Nunley KA, Rosano C, Ryan CM, et al. Clinically Relevant Cognitive Impairment in Middle-Aged Adults With Childhood-Onset Type 1 Diabetes. Diabetes Care. 2015;38(9):1768-76. doi: https://doi.org/10.2337/dc15-0041

117. Frier BM. Cognitive functioning in type 1 diabetes: the Diabetes Control and Complications Trial (DCCT) revisited. Diabetologia. 2011;54(2):233-6. doi: https://doi.org/10.1007/s00125-010-1983-6

118. Jacobson AM, Ryan CM, Braffett BH, et al. Cognitive performance declines in older adults with type 1 diabetes: results from 32 years of follow-up in the DCCT and EDIC Study. Lancet Diabetes Endocrinol. 2021;9(7):436-445. doi: https://doi.org/10.1016/S2213-8587(21)00086-3

119. van Duinkerken E, Steenwijk MD, Klein M, et al. Accelerated executive functions decline and gray matter structural changes in middle-aged type 1 diabetes mellitus patients with proliferative retinopathy. J Diabetes. 2018;10(11):835-846. doi: https://doi.org/10.1111/1753-0407.12773

120. Al-Shehaili SM, Al-Johani SS, Al-Sarhan NT, et al. The effect of poor glycemic control on cognitive function in children and adolescents with type 1 diabetes mellitus: A single-center crosssectional study (2019-2020). Saudi Med J. 2023;44(10):1006-1012. doi: https://doi.org/10.15537/smj.2023.44.20230327

121. Kar Ş, Er E, Ata A, et al. Effect of metabolic control on cognitive functions in children and adolescents with type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2023;36(7):636-642. doi: https://doi.org/10.1515/jpem-2023-0027

122. Biessels GJ, Reijmer YD. Brain changes underlying cognitive dysfunction in diabetes: what can we learn from MRI? Diabetes. 2014;63(7):2244-52. doi: https://doi.org/10.2337/db14-0348

123. Nunley KA, Ryan CM, Aizenstein HJ, et al. Regional gray matter volumes as related to psychomotor slowing in adults with Type 1 diabetes. Psychosom Med. 2017;79(5):533-540. doi: https://doi.org/10.1097/PSY.0000000000000449

124. van Duinkerken E, Schoonheim MM, Steenwijk MD, et al. Ventral striatum, but not cortical volume loss, is related to cognitive dysfunction in type 1 diabetic patients with and without microangiopathy. Diabetes Care. 2014;37(9):2483-90. doi: https://doi.org/10.2337/dc14-0016

125. Liu K, Huang X, Cui S, et al. Voxel-based morphometry reveals regional reductions of gray matter volume in school-aged children with short-term type 1 diabetes mellitus. Neuroreport. 2019;30(7):516-521. doi: https://doi.org/10.1097/WNR.0000000000001238

126. Liu K, Su H, Song J, et al. Altered gray matter volume in children with newly diagnosed type 1 diabetes mellitus. Pediatr Res. 2023;93(5):1342-1347. doi: https://doi.org/10.1038/s41390-022-02227-0

127. Moulton CD, Costafreda SG, Horton P et al. Meta-analyses of structural regional cerebral effects in type 1 and type 2 diabetes. Brain Imaging Behav. 2015;9(4):651-62. doi: https://doi.org/10.1007/s11682-014-9348-2

128. Liu J, Fan W, Jia Y, et al. Altered gray matter volume in patients with Type 1 diabetes mellitus. Front Endocrinol (Lausanne). 2020;11:45. doi: https://doi.org/10.3389/fendo.2020.00045

129. Yu KKK, Cheing GLY, Cheung C, et al. Gray matter abnormalities in Type 1 and Type 2 diabetes: a dual disorder ALE Quantification. Front Neurosci. 2021;15:638861. doi: https://doi.org/10.3389/fnins.2021.638861

130. van Elderen SG, Brandts A, van der Grond J, et al. Cerebral perfusion and aortic stiffness are independent predictors of white matter brain atrophy in type 1 diabetic patients assessed with magnetic resonance imaging. Diabetes Care. 2011;34(2):459-63. doi: https://doi.org/10.2337/dc10-1446/

131. Perantie DC, Wu J, Koller JM, et al. Regional brain volume differences associated with hyperglycemia and severe hypoglycemia in youth with type 1 diabetes. Diabetes Care. 2007;30(9):2331-7. doi: https://doi.org/10.2337/dc07-0351

132. Perantie DC, Koller JM, Weaver PM, et al. Prospectively determined impact of type 1 diabetes on brain volume during development. Diabetes. 2011;60(11):3006-14. doi: https://doi.org/10.2337/db11-0589

133. Marzelli MJ, Mazaika PK, Barnea-Goraly N, et al.; Diabetes Research in Children Network (DirecNet). Neuroanatomical correlates of dysglycemia in young children with type 1 diabetes. Diabetes. 2014;63(1):343-53. doi: https://doi.org/10.2337/db13-0179

134. Mazaika PK, Weinzimer SA, Mauras N, et al. Variations in brain volume and growth in young children with Type 1 diabetes. Diabetes. 2016;65(2):476-85. doi: https://doi.org/10.2337/db15-1242

135. Aye T, Mazaika PK, Mauras N, et al. Impact of early diabetic ketoacidosis on the developing brain. Diabetes Care. 2019;42(3):443-449. doi: https://doi.org/10.2337/dc18-1405

136. Mauras N, Buckingham B, White NH, et al. Impact ofType 1 diabetes in the developing brain in children: a longitudinal study. Diabetes Care. 2021;44(4):983-992. doi: https://doi.org/10.2337/dc20-2125

137. Pourabbasi A, Tehrani-Doost M, Qavam SE, et al. Association of diabetes mellitus and structural changes in the central nervous system in children and adolescents: a systematic review. J Diabetes Metab Disord. 2017;16:10. doi: https://doi.org/10.1186/s40200-017-0292-8

138. Dolatshahi M, Sanjari Moghaddam H, et al. Central nervous system microstructural alterations in Type 1 diabetes mellitus: A systematic review of diffusion Tensor imaging studies. Diabetes Res Clin Pract. 2023;205:110645. doi: https://doi.org/10.1016/j.diabres.2023.110645

139. Wessels AM, Rombouts SA, Remijnse PL, et al. Cognitive performance in type 1 diabetes patients is associated with cerebral white matter volume. Diabetologia. 2007;50(8):1763-9. doi: https://doi.org/10.1007/s00125-007-0714-0

140. Yoon S, Kim J, Musen G, et al. Prefronto-temporal white matter microstructural alterations 20 years after the diagnosis of type 1 diabetes mellitus. Pediatr Diabetes. 2018;19(3):478-485. doi: https://doi.org/10.1111/pedi.12574

141. van Duinkerken E, Schoonheim MM, Ijzerman RG, et al. Diffusion tensor imaging in type 1 diabetes: decreased white matter integrity relates to cognitive functions. Diabetologia. 2012;55(4):1218-20. doi: https://doi.org/10.1007/s00125-012-2488-2

142. Kodl CT, Franc DT, Rao JP, et al. Diffusion tensor imaging identifies deficits in white matter microstructure in subjects with type 1 diabetes that correlate with reduced neurocognitive function. Diabetes. 2008;57(11):3083-9. doi: https://doi.org/10.2337/db08-0724

143. Franc DT, Kodl CT, Mueller BA, et al. High connectivity between reduced cortical thickness and disrupted white matter tracts in long-standing type 1 diabetes. Diabetes. 2011;60(1):315-9. doi: https://doi.org/10.2337/db10-0598

144. Musen G, Lyoo IK, Sparks CR, et al. Effects of type 1 diabetes on gray matter density as measured by voxel-based morphometry. Diabetes. 2006;55(2):326-33. doi: https://doi.org/10.2337/diabetes.55.02.06.db05-0520

145. Malone JI. Diabetic Central Neuropathy: CNS damage related to hyperglycemia. Diabetes. 2016;65(2):355-7. doi: https://doi.org/10.2337/dbi15-0034

146. Wessels AM, Simsek S, Remijnse PL, et al. Voxel-based morphometry demonstrates reduced grey matter density on brain MRI in patients with diabetic retinopathy. Diabetologia. 2006;49(10):2474-80. doi: https://doi.org/10.1007/s00125-006-0283-7

147. Wessels AM, Rombouts SA, Simsek S, et al. Microvascular disease in type 1 diabetes alters brain activation: a functional magnetic resonance imaging study. Diabetes. 2006;55(2):334-40. doi: https://doi.org/10.2337/diabetes.55.02.06.db05-0680

148. Frokjar JB, Brock C, Softeland E, et al. Macrostructural brain changes in patients with longstanding type 1 diabetes mellitus -a cortical thickness analysis study. Exp Clin Endocrinol Diabetes. 2013;121(6):354-60. doi: https://doi.org/10.1055/s-0033-1345120

149. Patton N, Aslam T, Macgillivray T, et al. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat. 2005;206(4):319-48. doi: https://doi.org/10.1111/j.1469-7580.2005.00395.x

150. Wong TY, Klein R, Sharrett AR, et al. Retinal microvascular abnormalities and cognitive impairment in middle-aged persons: the Atherosclerosis Risk in Communities Study. Stroke. 2002;33(6):1487-92. doi: https://doi.org/10.1161/01.str.0000016789.56668.43

151. Wong TY, Mosley TH Jr, et al.; Atherosclerosis Risk in Communities Study. Retinal microvascular changes and MRI signs of cerebral atrophy in healthy, middle-aged people. Neurology. 2003;61(6):806-11. doi: https://doi.org/10.1212/01.wnl.0000086372.05488.8d

152. Cooper LS, Wong TY, Klein R, et al. Retinal microvascular abnormalities and MRI-defined subclinical cerebral infarction: the Atherosclerosis Risk in Communities Study. Stroke. 2006;37(1):82-6. doi: https://doi.org/10.1161/01.STR.0000195134.04355.e5

153. Hughes TM, Ryan CM, Aizenstein HJ, et al. Frontal gray matter atrophy in middle aged adults with type 1 diabetes is independent of cardiovascular risk factors and diabetes complications. J Diabetes Complications. 2013;27(6):558-64. doi: https://doi.org/10.1016/jjdiacomp.2013.07.001

154. Salem MA, Matta LF, Tantawy AA, et al. Single photon emission tomography (SPECT) study of regional cerebral blood flow in normoalbuminuric children and adolescents with type 1 diabetes. PediatrDiabetes. 2002;3(3):155-62. doi: https://doi.org/10.1034/j.1399-5448.2002.30306.x

155. Jiménez-Bonilla JF, Quirce R, Hernández A, et al. Assessment of cerebral perfusion and cerebrovascular reserve in insulin-dependent diabetic patients without central neurological symptoms by means of 99mTc-HMPAO SPET with acetazolamide. Eur JNucl Med. 2001;28(11):1647-55. doi: https://doi.org/10.1007/s002590100595

156. Quirce R, Carril JM, Jiménez-Bonilla JF, et al. Semi-quantitative assessment of cerebral blood flow with 99mTc-HMPAO SPET in type I diabetic patients with no clinical history of cerebrovascular disease. Eur J Nucl Med. 1997;24(12):1507-13. doi: https://doi.org/10.1007/s002590050181

157. Кособян Е.П. Состояние ауторегуляции мозгового кровотока у больных сахарным диабетом 1 типа и микрососудистыми осложнениями. Дис. ... канд. мед. наук. — Москва; 2012. [Kosobyan EP. Sostoyanie autoregulyacii mozgovogo krovotoka u bol'nyh saharnym diabetom 1 tipa i mikrososudistymi oslozhneniyami. [dissertation] Moscow; 2012. (In Russ.)]

158. Iarek-Martynova IR, Shestakova MV, Kosobian EP, et al. Cerebral hemodynamics and cerebral perfusion reserve in patients with diabetes mellitus type 1. S.S. Korsakov Journal of Neurology and Psychiatry. 2012;112(12-2): 43-48. (In Russ.)

159. Samoilova YuG, Matveeva MV, Tonkikh OS, Fimushkina NYu. Brain perfusion in type 1 diabetes and cognitive dysfunction. Medical Visualization. 2021;25(3):66-72. (In Russ.) doi: https://doi.org/10.24835/1607-0763-940

160. Soloveva EY, Amelina IP. Cerebral small vessel disease's impact on the development of chronic cerebral ischemia: paradigms of treatment. Meditsinskiy sovet = Medical Council. 2020;(2):16-24. (In Russ.) doi: https://doi.org/10.21518/2079-701X-2020-2-16-24

161. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9(7):689-701. doi: https://doi.org/10.1016/S1474-4422(10)70104-6

162. Rostrup E, Gouw AA, Vrenken H, et al.; LADIS study group. The spatial distribution of age-related white matter changes as a function of vascular risk factors-results from the LADIS study. Neuroimage. 2012;60(3):1597-607. doi: https://doi.org/10.1016/j.neuroimage.2012.01.106

163. Fisher M, French S, Ji P, Kim RC. Cerebral microbleeds in the elderly: a pathological analysis. Stroke. 2010; 41(12):2782-2785. doi: https://doi.org/41:2782-2785pmid:21030702

164. Woerdeman J, van Duinkerken J, Wattjes MP, et al. Proliferative retinopathy in type 1 diabetes is associated with cerebral microbleeds, which is part of generalized microangiopathy. Diabetes Care. 2014;37(4):1165-8. doi: https://doi.org/10.2337/dc13-1586

165. Yu M, Jia Y, Yang D, et al. Association between haemoglobin A1c and cerebral microbleeds in community-based stroke-free individuals: A cross-sectional study. Diabetes Metab Res Rev. 2022;38(6):e3557. doi: https://doi.org/10.1002/dmrr.3557

166. Thorn LM, Shams S, Gordin D, et al.; FinnDiane Study Group. Clinical and MRI features of cerebral small-vessel disease in Type 1 diabetes. Diabetes Care. 2019;42(2):327-330. doi: https://doi.org/10.2337/dc18-1302

167. Inkeri J, Adeshara K, Harjutsalo V, et al.; FinnDiane Study Group. Glycemic control is not related to cerebral small vessel disease in neurologically asymptomatic individuals with type 1 diabetes. Acta Diabetol. 2022;59(4):481-490. doi: https://doi.org/10.1007/s00592-021-01821-8

168. Eriksson MI, Summanen P, Gordin D, et al.; FinnDiane Study Group. Cerebral small-vessel disease is associated with the severity of diabetic retinopathy in type 1 diabetes. BMJOpen Diabetes Res Care. 2021;9(1):e002274. doi: https://doi.org/10.1136/bmjdrc-2021-002274

169. Wardlaw JM, Smith EE, Biessels GJ, et al.; STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12(8):822-38. doi: https://doi.org/10.1016/S1474-4422(13)70124-8

170. Onodera O. What is cerebral small vessel disease? RinshoShinkeigaku. 2011;51(6):399-405. Japanese. doi: https://doi.org/10.5692/clinicalneurol.51.399

171. Deary IJ, Crawford JR, Hepburn DA, et al. Severe hypoglycemia and intelligence in adult patients with insulin-treated diabetes. Diabetes. 1993;42(2):341-4. doi: https://doi.org/10.2337/diab.42.2341

172. Lobnig BM, Kromeke O, Optenhostert-Porst C, Wolf OT. Hippocampal volume and cognitive performance in long-standing type 1 diabetic patients without macrovascular complications. Diabetic Med. 2006;23:32-39. doi: https://doi.org/10.1111/j.1464-5491.2005.01716.x

173. Lyoo IK, Yoon SJ, Musen G, et al. Altered prefrontal glutamate-glutamine-gamma-aminobutyric acid levels and relation to low cognitive performance and depressive symptoms in type 1 diabetes mellitus. Arch Gen Psychiatry. 2009;66(8):878-87. doi: https://doi.org/10.1001/archgenpsychiatry.2009.86

174. van Duinkerken E, Schoonheim MM, Sanz-Arigita EJ, et al. Resting-state brain networks in type 1 diabetic patients with and without microangiopathy and their relation to cognitive functions and disease variables. Diabetes. 2012;61(7):1814-21. doi: https://doi.org/10.2337/db11-1358

175. Patino-Fernandez AM, Delamater AM, Applegate EB, et al. Neurocognitive functioning in preschool-age children with type 1 diabetes mellitus. Pediatr Diabetes. 2010;11(6):424-30. doi: https://doi.org/10.1111/j.1399-5448.2009.00618.x

176. van Dijk M, Donga E, van Schie MK, et al. Impaired sustained attention in adult patients with type 1 diabetes is related to diabetes per se. Diabetes Metab Res Rev. 2014;30(2):132-139. doi: https://doi.org/10.1002/dmrr.2467

177. Samoylova YG, Novoselova MV, Zhukova NG, Tonkikh OS. Analysis of the Role of Neurospecific Proteins in the Diagnosis of Cognitive Dysfunction in Patients with Type 1 Diabetes Mellitus. Diabetes mellitus. 2014;17(2):83-90. (In Russ). doi: https://doi.org/10.14341/DM2014283-90

178. Moryś JM, Kozera GM, Neubauer-Geryk J, et al. Statin use and cognitive impairment in patients with Type 1 diabetes: an observational study. Clin Neuropharmacol. 2016;39(4):182-7. doi: https://doi.org/10.1097/WNF.0000000000000158

179. Awad A, Lundqvist R, Rolandsson O, Sundstrom A, Eliasson M. Lower cognitive performance among long-term type 1 diabetes survivors: A case-control study. J Diabetes Complications. 2017;31(8):1328-1331. doi: https://doi.org/10.1016/jjdiacomp.2017.04.023

180. He J, Zou W, Zhu J, et al. Cognitive function and neuroimaging characteristics in patients with childhood-onset type 1 diabetes mellitus. Diabetes Metab Res Rev. 2023;39(4):e3613. doi: https://doi.org/10.1002/dmrr.3613

181. Ryan CM, Williams TM, Finegold DN, Orchard TJ. Cognitive dysfunction in adults with type 1 (insulin-dependent) diabetes mellitus of long duration: effects of recurrent hypoglycaemia and other chronic complications. Diabetologia. 1993;36(4):329-34. doi: https://doi.org/10.1007/BF00400236

182. Bj0rgaas M, Gimse R, Vik T, Sand T. Cognitive function in type 1 diabetic children with and without episodes of severe hypoglycaemia. Acta Paediatr. 1997;86(2):148-53. doi: https://doi.org/10.1111/j.1651-2227.1997.tb08856.x

183. Asvold BO, Sand T, Hestad K, Bj0rgaas MR. Cognitive function in type 1 diabetic adults with early exposure to severe hypoglycemia: a 16-year follow-up study. Diabetes Care. 2010;33(9):1945-7. doi: https://doi.org/10.2337/dc10-0621

184. Mauras N, Mazaika P, Buckingham B, et al. Longitudinal assessment of neuroanatomical and cognitive differences in young children with type 1 diabetes: association with hyperglycemia. Diabetes. 2015;64(5):1770-9. doi: https://doi.org/10.2337/db14-1445-

185. Jessup AB, Grimley MB, Meyer E, et al. Effects of diabetic ketoacidosis on visual and verbal neurocognitive function in young patients presenting with new-onset Type 1 diabetes. J Clin Res Pediatr Endocrinol. 2015;7(3):203-10. doi: https://doi.org/10.4274/jcrpe.2158

186. Antenor-Dorsey JA, Meyer E, Rutlin J, et al. White matter microstructural integrity in youth with type 1 diabetes. Diabetes. 2013;62(2):581-9. doi: https://doi.org/10.2337/db12-0696

187. Woerdeman J, van Duinkerken J, Wattjes MP, et al. Proliferative retinopathy in type 1 diabetes is associated with cerebral microbleeds, which is part of generalized microangiopathy. Diabetes Care. 2014;37(4):1165-8. doi: https://doi.org/10.2337/dc13-1586

188. Nunley KA, Ryan CM, Orchard TJ, et al. White matter hyperintensities in middle-aged adults with childhood-onset type 1 diabetes. Neurology. 2015;84(20):2062-9. doi: https://doi.org/10.1212/WNL.0000000000001


Supplementary files

1. Дополнительные материалы
Subject
Type Исследовательские инструменты
Download (270KB)    
Indexing metadata ▾

Review

For citations:


Starostina E.G., Kotova T.S. Psychoorganic syndrome in type 1 diabetes mellitus: a concomitant disease or a complication of diabetes? (Review). Diabetes mellitus. 2025;28(3):274-283. (In Russ.) https://doi.org/10.14341/DM13294

Views: 42


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)