Type 1 diabetes in children: adulthood ahead
https://doi.org/10.14341/DM13252
Abstract
Type 1 diabetes mellitus (T1DM) in childhood is one of the most important social and medical problems, given the growing incidence and negative impact on the duration and quality of life. The onset of the disease in childhood associated with significantly reduced life expectancy, largely due to micro- and macrovascular complications, and background pathological processes may occur from the T1DM onset due to suboptimal glucose control. Large registers data indicate that less than half of children with T1DM achieve target glycemic control, and adolescence is characterized by the worst glycemic control among all age groups. In recent years, modern treatment tools have been widely adopted in children with T1DM: insulin pumps, continuous glucose monitoring and automatic insulin delivery systems, which has become possible due to their increased availability, convenience and proven effectiveness. These technologies not only reduce the burden of the disease, but also improve the effectiveness of treatment of T1DM in children, consequently reducing the risks of diabetic complications protecting the health for the upcoming adult life.
About the Author
D. N. LaptevRussian Federation
Dmitry N. Laptev, MD, PhD
WoS Researcher ID: O-1826-2013; Scopus Author ID: 24341083800
11 Dm. Ulyanova street, 117036 Moscow
References
1. Gregory GA, Robinson TM, Linklater SE, et al. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. Lancet Diabetes Endocrinol. 2022;10(10):741-760. doi: https://doi.org/10.1016/S2213-8587(22)00218-2
2. Laptev DN, Bezlepkina OB, Sheshko EL, et al. Main epidemiological indicators of type 1 diabetes mellitus in children in the Russian Federation for 2014–2023. Problems of Endocrinology. 2024;70(5):76-83. (In Russ.) doi: https://doi.org/10.14341/probl13515
3. Dedov II, Shestakova MV, Peterkova VA, et al. Diabetes mellitus in children and adolescents according to the Federal diabetes registry in the Russian Federation: dynamics of major epidemiological characteristics for 2013–2016. Diabetes mellitus. 2017;20(6):392-402. (In Russ.) doi: https://doi.org/10.14341/DM9460
4. Hermann JM, Miller KM, Hofer SE, et al. The Transatlantic HbA1c gap: differences in glycaemic control across the lifespan between people included in the US T1D Exchange Registry and those included in the German/Austrian DPV registry. Diabet Med. 2020;37(5):848-855. doi: https://doi.org/10.1111/dme.14148
5. Gerhardsson P, Schwandt A, Witsch M, et al. The SWEET Project 10-Year Benchmarking in 19 Countries Worldwide Is Associated with Improved HbA1c and Increased Use of Diabetes Technology in Youth with Type 1 Diabetes. Diabetes Technol Ther. 2021;23(7):491-499. doi: https://doi.org/10.1089/dia.2020.0618
6. Gandhi K, Ebekozien O, Noor N, et al. Insulin Pump Utilization in 2017-2021 for More Than 22,000 Children and Adults With Type 1 Diabetes: A Multicenter Observational Study. Clin Diabetes. 2024;42(1):56-64. doi: https://doi.org/10.2337/cd23-0055
7. Ross PL, Milburn J, Reith DM, Wiltshire E, Wheeler BJ. Clinical review: insulin pump-associated adverse events in adults and children. Acta Diabetol. 2015;52(6):1017-1024. doi: https://doi.org/10.1007/s00592-015-0784-2
8. Mecklenburg RS, Benson EA, Benson JW Jr, et al. Acute complications associated with insulin infusion pump therapy. Report of experience with 161 patients. JAMA. 1984;252(23):3265-3269. doi: https://doi.org/10.1001/jama.1984.03350230025026
9. Wheeler BJ, Donaghue KC, Heels K, Ambler GR. Family perceptions of insulin pump adverse events in children and adolescents. Diabetes Technol Ther. 2014;16(4):204-207. doi: https://doi.org/10.1089/dia.2013.0315
10. Wheeler BJ, Heels K, Donaghue KC, Reith DM, Ambler GR. Insulin pump-associated adverse events in children and adolescents--a prospective study. Diabetes Technol Ther. 2014;16(9):558-562. doi: https://doi.org/10.1089/dia.2013.0388
11. Johnson SR, Cooper MN, Jones TW, Davis EA. Long-term outcome of insulin pump therapy in children with type 1 diabetes assessed in a large population-based case-control study. Diabetologia. 2013;56(11):2392-2400. doi: https://doi.org/10.1007/s00125-013-3007-9
12. Benkhadra K, Alahdab F, Tamhane SU, McCoy RG, Prokop LJ, Murad MH. Continuous subcutaneous insulin infusion versus multiple daily injections in individuals with type 1 diabetes: a systematic review and meta-analysis. Endocrine. 2017;55(1):77-84. doi: https://doi.org/10.1007/s12020-016-1039-x
13. Sherr JL, Schoelwer M, Dos Santos TJ, et al. ISPAD Clinical Practice Consensus Guidelines 2022: Diabetes technologies: Insulin delivery. Pediatr Diabetes. 2022;23(8):1406-1431. doi: https://doi.org/10.1111/pedi.13421
14. Plotnick LP, Clark LM, Brancati FL, Erlinger T. Safety and effectiveness of insulin pump therapy in children and adolescents with type 1 diabetes. Diabetes Care. 2003;26(4):1142-1146. doi: https://doi.org/10.2337/diacare.26.4.1142
15. Alsaleh FM, Smith FJ, Keady S, Taylor KM. Insulin pumps: from inception to the present and toward the future. J Clin Pharm Ther. 2010;35(2):127-138. doi: https://doi.org/10.1111/j.1365-2710.2009.01048.x
16. Nimri R, Weintrob N, Benzaquen H, Ofan R, Fayman G, Phillip M. Insulin pump therapy in youth with type 1 diabetes: a retrospective paired study. Pediatrics. 2006;117(6):2126-2131. doi: https://doi.org/10.1542/peds.2005-2621
17. Laptev DN, Pereverzeva SV, Emelyanov AO, et al. Monitoring of insulin pump therapy in children, adolescents, and young adults with type 1 diabetes mellitus in the Russian Federation. Problems of Endocrinology. 2018;64(2):85-92. (In Russ.) doi: https://doi.org/10.14341/probl8756
18. Laptev DN, Emelyanov AO, Medvedeva ED, et al. Long-term glycemic control and factors, associated with response to pump insulin therapy in children. Diabetes mellitus. 2021;24(2):122-132. (In Russ.) doi: https://doi.org/10.14341/DM12530
19. Pickup JC, Sutton AJ. Severe hypoglycaemia and glycaemic control in Type 1 diabetes: meta-analysis of multiple daily insulin injections compared with continuous subcutaneous insulin infusion. Diabet Med. 2008;25(7):765-774. doi: https://doi.org/10.1111/j.1464-5491.2008.02486.x
20. Pańkowska E, Błazik M, Dziechciarz P, et al. Continuous subcutaneous insulin infusion vs. multiple daily injections in children with type 1 diabetes: a systematic review and meta-analysis of randomized control trials. Pediatr Diabetes. 2009;10(1):52-58. doi: https://doi.org/10.1111/j.1399-5448.2008.00440.x
21. Sherr JL, Hermann JM, Campbell F, et al. Use of insulin pump therapy in children and adolescents with type 1 diabetes and its impact on metabolic control: comparison of results from three large, transatlantic paediatric registries. Diabetologia. 2016;59(1):87-91. doi: https://doi.org/10.1007/s00125-015-3790-6
22. Burckhardt MA, Smith GJ, Cooper MN, et al. Real-world outcomes of insulin pump compared to injection therapy in a population-based sample of children with type 1 diabetes. Pediatr Diabetes. 2018;19(8):1459-1466. doi: https://doi.org/10.1111/pedi.12754
23. Vitebskaya AV, Popovich AV. Prichiny otkazov ot pompovoj insulinoterapii detej i podrostkov s saharnym diabetom 1 tipa. Poliklinika. 2016;1–2:35–39. (In Russ.)
24. Emel’yanov AO, Kuraeva TL, Laptev DN, et al. Prospective study of efficacy and safety of insulin pump therapy in children and adolescents. Diabetes mellitus. 2010;13(3):143-146. (In Russ.) doi: https://doi.org/10.14341/2072-0351-5503
25. van den Boom L, Karges B, Auzanneau M, et al. Temporal Trends and Contemporary Use of Insulin Pump Therapy and Glucose Monitoring Among Children, Adolescents, and Adults With Type 1 Diabetes Between 1995 and 2017. Diabetes Care. 2019;42(11):2050-2056. doi: https://doi.org/10.2337/dc19-0345
26. Miller KM, Hermann J, Foster N, et al. Longitudinal Changes in Continuous Glucose Monitoring Use Among Individuals With Type 1 Diabetes: International Comparison in the German and Austrian DPV and U.S. T1D Exchange Registries. Diabetes Care. 2020;43(1):e1-e2. doi: https://doi.org/10.2337/dc19-1214
27. Naranjo D, Tanenbaum ML, Iturralde E, Hood KK. Diabetes Technology: Uptake, Outcomes, Barriers, and the Intersection With Distress. J Diabetes Sci Technol. 2016;10(4):852-858. doi: https://doi.org/10.1177/1932296816650900
28. Prahalad P, Ebekozien O, Alonso GT, et al. Multi-Clinic Quality Improvement Initiative Increases Continuous Glucose Monitoring Use Among Adolescents and Young Adults With Type 1 Diabetes. Clin Diabetes. 2021;39(3):264-271. doi: https://doi.org/10.2337/cd21-0026
29. Tauschmann M, Forlenza G, Hood K, et al. ISPAD Clinical Practice Consensus Guidelines 2022: Diabetes technologies: Glucose monitoring. Pediatr Diabetes. 2022;23(8):1390-1405. doi: https://doi.org/10.1111/pedi.13451
30. Laptev DN, Bezlepkina OB, Demina ES, et al. Evaluation of FreeStyle Libre in pediatric T1DM: improved glycemic control, reduction in diabetic ketoacidosis and severe hypoglycemia. Problems of Endocrinology. 2022;68(3):86-92. (In Russ.) doi: https://doi.org/10.14341/probl12877
31. Dicembrini I, Cosentino C, Monami M, et al. Effects of real-time continuous glucose monitoring in type 1 diabetes: a meta-analysis of randomized controlled trials. Acta Diabetol. 2021;58(4):401-410. doi: https://doi.org/10.1007/s00592-020-01589-3
32. Maiorino MI, Signoriello S, Maio A, et al. Effects of Continuous Glucose Monitoring on Metrics of Glycemic Control in Diabetes: A Systematic Review With Meta-analysis of Randomized Controlled Trials. Diabetes Care. 2020;43(5):1146-1156. doi: https://doi.org/10.2337/dc19-1459
33. Tauschmann M, Hermann JM, Freiberg C, et al. Reduction in Diabetic Ketoacidosis and Severe Hypoglycemia in Pediatric Type 1 Diabetes During the First Year of Continuous Glucose Monitoring: A Multicenter Analysis of 3,553 Subjects From the DPV Registry. Diabetes Care. 2020;43(3):e40-e42. doi: https://doi.org/10.2337/dc19-1358
34. Cardona-Hernandez R, Schwandt A, Alkandari H, et al. Glycemic Outcome Associated With Insulin Pump and Glucose Sensor Use in Children and Adolescents With Type 1 Diabetes. Data From the International Pediatric Registry SWEET. Diabetes Care. 2021;44(5):1176-1184. doi: https://doi.org/10.2337/dc20-1674
35. Beck RW, Riddlesworth T, Ruedy K, et al. Effect of Continuous Glucose Monitoring on Glycemic Control in Adults With Type 1 Diabetes Using Insulin Injections: The DIAMOND Randomized Clinical Trial. JAMA. 2017;317(4):371-378. doi: https://doi.org/10.1001/jama.2016.19975
36. von dem Berge T, Remus K, Biester S, et al. In-home use of a hybrid closed loop achieves time-in-range targets in preschoolers and school children: Results from a randomized, controlled, crossover trial. Diabetes Obes Metab. 2022;24(7):1319-1327. doi: https://doi.org/10.1111/dom.14706
37. Kariyawasam D, Morin C, Casteels K, et al. Hybrid closed-loop insulin delivery versus sensor-augmented pump therapy in children aged 6-12 years: a randomised, controlled, cross-over, non-inferiority trial. Lancet Digit Health. 2022;4(3):e158-e168. doi: https://doi.org/10.1016/S2589-7500(21)00271-5
38. Bergenstal RM, Nimri R, Beck RW, et al. A comparison of two hybrid closed-loop systems in adolescents and young adults with type 1 diabetes (FLAIR): a multicentre, randomised, crossover trial. Lancet. 2021;397(10270):208-219. doi: https://doi.org/10.1016/S0140-6736(20)32514-9
39. Deiss D, Irace C, Carlson G, Tweden KS, Kaufman FR. Real-World Safety of an Implantable Continuous Glucose Sensor Over Multiple Cycles of Use: A Post-Market Registry Study. Diabetes Technol Ther. 2020;22(1):48-52. doi: https://doi.org/10.1089/dia.2019.0159
40. Ware J, Allen JM, Boughton CK, et al. Randomized Trial of Closed-Loop Control in Very Young Children with Type 1 Diabetes. N Engl J Med. 2022;386(3):209-219. doi: https://doi.org/10.1056/NEJMoa2111673
41. Bode B, Carlson A, Liu R, et al. Ultrarapid Lispro Demonstrates Similar Time in Target Range to Lispro with a Hybrid Closed-Loop System. Diabetes Technol Ther. 2021;23(12):828-836. doi: https://doi.org/10.1089/dia.2021.0184
42. Galderisi A, Cohen N, Calhoun P, et al. Effect of Afrezza on Glucose Dynamics During HCL Treatment. Diabetes Care. 2020;43(9):2146-2152. doi: https://doi.org/10.2337/dc20-0091
43. Sherr JL, Patel NS, Michaud CI, et al. Mitigating Meal-Related Glycemic Excursions in an Insulin-Sparing Manner During Closed-Loop Insulin Delivery: The Beneficial Effects of Adjunctive Pramlintide and Liraglutide. Diabetes Care. 2016;39(7):1127-1134. doi: https://doi.org/10.2337/dc16-0089
44. Tsoukas MA, Majdpour D, Yale JF, et al. A fully artificial pancreas versus a hybrid artificial pancreas for type 1 diabetes: a single-centre, open-label, randomised controlled, crossover, non-inferiority trial. Lancet Digit Health. 2021;3(11):e723-e732. doi: https://doi.org/10.1016/S2589-7500(21)00139-4
45. Biester T, Muller I, von dem Berge T, et al. Add-on therapy with dapagliflozin under full closed loop control improves time in range in adolescents and young adults with type 1 diabetes: The DAPADream study. Diabetes Obes Metab. 2021;23(2):599-608. doi: https://doi.org/10.1111/dom.14258
46. Haidar A, Rabasa-Lhoret R, Legault L, et al. Single- and Dual-Hormone Artificial Pancreas for Overnight Glucose Control in Type 1 Diabetes. J Clin Endocrinol Metab. 2016;101(1):214-223. doi: https://doi.org/10.1210/jc.2015-3003
47. Laptev DN, Peterkova VA. Use of telemedicine improves glycemic control and quality of life in type 1 diabetes children on insulin pump therapy. Diabetes mellitus. 2017;20(6):420-426. (In Russ.) doi: https://doi.org/10.14341/DM8677
48. Laptev DN, Emelyanov AO, Samoilova YG, et al. Remote monitoring and treatment of children and adolescents with type 1 diabetes. Problems of Endocrinology. 2020;66(4):50-60. (In Russ.) doi: https://doi.org/10.14341/probl12201
49. Laptev DN, Eremina IA, Karpushkina AV, et al. Remote monitoring of adolescents with type 1 diabetes mellitus using a mobile application. Diabetes mellitus. 2021;24(5):404-413. (In Russ.) doi: https://doi.org/10.14341/DM12776
50. Sorokin DY, Trufanova ES, Rebrova OY, et al. Clinical decision support system based on artificial intelligence for adjusting insulin pump parameters in children with type 1 diabetes mellitus. Diabetes mellitus. 2024;27(3):242-253. (In Russ.) doi: https://doi.org/10.14341/DM13167
51. Laptev DN, Sorokin DY, Trufanova ES, et al. Effectiveness and safety of an artificial intelligence-based medical decision support system for adjusting insulin pump settings in children with type 1 diabetes mellitus: randomized controlled trial. Diabetes mellitus. 2024;27(3):254-264. (In Russ.) doi: https://doi.org/10.14341/DM13171
Review
For citations:
Laptev D.N. Type 1 diabetes in children: adulthood ahead. Diabetes mellitus. 2025;28(1):18-25. (In Russ.) https://doi.org/10.14341/DM13252

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).