Preview

Diabetes mellitus

Advanced search

Diabetic cardiomyopathy: definition, right to exist

https://doi.org/10.14341/DM13250

Abstract

It is known that in diabetes mellitus (DM), cardiac pathology can develop not only as a result of damage to the coronary arteries. No less significant is the role of non-coronary myocardial dysfunction, including that associated with chronic hyperglycemia. In 2024, a consensus document was published, developed by experts from the Heart Failure (HF) Association of the European Society of Cardiology (ESC) and the Working Group on Myocardial and Pericardial Diseases of the ESC, in which the term «diabetic myocardial disorder» was proposed for the first time. This condition is defined as systolic and/or diastolic myocardial dysfunction in DM and develops under the combined influence of several factors, with hyperglycemia playing the leading role. The concept of «diabetic cardiomyopathy» (DCM) has been actively used by scientists for a long time, but to date it has not been implemented at the level of complications of DM by analogy with diabetic nephropathy and is not included in the spectrum of diseases classified as diabetic macroangiopathy. Pathological processes characteristic of DCM and HF with preserved ejection fraction (HFpEF) in DM are similar, and therefore these conditions are often equated. The diagnostic concept of HFpEF is being improved. According to modern concepts, patients with type 2 DM (DM2) and asymptomatic structural and/or functional myocardial abnormalities are diagnosed with subclinical HF. The importance of timely recognition of this stage is that current treatment options for DM2 make it possible to stop or slow down its progression to symptomatic HF. This article discusses current views on the etiopathogenesis of DCM in patients with DM, summarizes recommendations on the diagnostic capabilities of diastolic myocardial dysfunction, subclinical HF and HFpEF, and emphasizes the importance of timely assessment of the risk of developing clinically manifest HF in patients with DM2.

About the Authors

T. N. Markova
ROSUNIMED; Moscow City Clinical Hospital № 52
Russian Federation

Tatyana N. Markova - MD, PhD, Professor.

Moscow


Competing Interests:

none



M. A. Ovchinnikova
ROSUNIMED
Russian Federation

Margarita A. Ovchinnikova - postgraduate student.

20/1 Delegatskaya street, 127473 Moscow


Competing Interests:

none



V. V. Shkodkina
ROSUNIMED
Russian Federation

Victoria V. Shkodkina - clinical resident.

Moscow


Competing Interests:

none



O. A. Belyaeva
ROSUNIMED
Russian Federation

Olga A. Belyaeva - clinical resident.

Moscow


Competing Interests:

none



References

1. Seferović PM, Paulus WJ, Rosano G, et al. Diabetic myocardial disorder. A clinical consensus statement of the Heart Failure Association of the ESC and the ESC Working Group on Myocardial & Pericardial Diseases. Eur J Heart Fail. 2024;26(9):1893-1903. doi: https://doi.org/10.1002/ejhf.3347

2. Shehadeh A, Regan TJ. Cardiac consequences of diabetes mellitus. Clin Cardiol. 1995;18(6):301-305. doi: https://doi.org/10.1002/clc.4960180604

3. Devereux RB, Roman MJ, Paranicas M, et al. Impact of diabetes on cardiac structure and function: the strong heart study. Circulation. 2000;101(19):2271-2276. doi: https://doi.org/10.1161/01.cir.101.19.2271

4. Borlaug BA. Evaluation and management of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2020;17(9):559-573. doi: https://doi.org/10.1038/s41569-020-0363-2

5. Regan TJ, Lyons MM, Ahmed SS, et al. Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest. 1977;60(4):884-899. doi: https://doi.org/10.1172/JCI108843

6. Dedov II, Shestakova MV, Vikulova OK, et al. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010–2022. Diabetes mellitus. 2023;26(2):104-123. (In Russ.) doi: https://doi.org/10.14341/DM13035

7. Seferović PM, Petrie MC, Filippatos GS, et al. Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2018;20(5):853-872. doi: https://doi.org/10.1002/ejhf.1170

8. Gilca GE, Stefanescu G, Badulescu O, et al. Diabetic Cardiomyopathy: Current Approach and Potential Diagnostic and Therapeutic Targets. J Diabetes Res. 2017;2017:1310265. doi: https://doi.org/10.1155/2017/1310265

9. Yap J, Tay WT, Teng TK, et al. Association of Diabetes Mellitus on Cardiac Remodeling, Quality of Life, and Clinical Outcomes in Heart Failure With Reduced and Preserved Ejection Fraction. J Am Heart Assoc. 2019;8(17):e013114. doi: https://doi.org/10.1161/JAHA.119.013114

10. Preiss D, van Veldhuisen DJ, Sattar N, et al. Eplerenone and new-onset diabetes in patients with mild heart failure: results from the Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure (EMPHASIS-HF). Eur J Heart Fail. 2012;14(8):909-915. doi: https://doi.org/10.1093/eurjhf/hfs067

11. Regensteiner JG, Bauer TA, Reusch JE, et al. Cardiac dysfunction during exercise in uncomplicated type 2 diabetes. Med Sci Sports Exerc. 2009;41(5):977-984. doi: https://doi.org/10.1249/MSS.0b013e3181942051

12. Stahrenberg R, Edelmann F, Mende M, et al. Association of glucose metabolism with diastolic function along the diabetic continuum. Diabetologia. 2010;53(7):1331-1340. doi: https://doi.org/10.1007/s00125-010-1718-8

13. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ. 1998;317(7160):703-713

14. Guria RT, Prasad MK, Mishra B, Marandi S, Kumar A, Dungdung A. Association of Glycosylated Haemoglobin (HbA1c) Level With Left Ventricular Diastolic Dysfunction in Patients With Type 2 Diabetes. Cureus. 2022;14(11):e31626. doi: https://doi.org/10.7759/cureus.31626

15. Abudureyimu M, Luo X, Wang X, et al. Heart failure with preserved ejection fraction (HFpEF) in type 2 diabetes mellitus: from pathophysiology to therapeutics. J Mol Cell Biol. 2022;14(5):mjac028. doi: https://doi.org/10.1093/jmcb/mjac028

16. Ernande L, Bergerot C, Rietzschel ER, et al. Diastolic dysfunction in patients with type 2 diabetes mellitus: is it really the first marker of diabetic cardiomyopathy?. J Am Soc Echocardiogr. 2011;24(11):1268-1275.e1. doi: https://doi.org/10.1016/j.echo.2011.07.017

17. An D, Rodrigues B. Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol. 2006;291(4):H1489-H1506. doi: https://doi.org/10.1152/ajpheart.00278.2006

18. Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004;63(4):582-592. doi: https://doi.org/10.1016/j.cardiores.2004.05.001

19. van Heerebeek L, Hamdani N, Handoko ML, et al. Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation. 2008;117(1):43-51. doi: https://doi.org/10.1161/CIRCULATIONAHA.107.728550

20. Heymes C, Vanderheyden M, Bronzwaer JG, et al. Endomyocardial nitric oxide synthase and left ventricular preload reserve in dilated cardiomyopathy. Circulation. 1999;99(23):3009-3016. doi: https://doi.org/10.1161/01.cir.99.23.3009

21. De Geest B, Mishra M. Role of Oxidative Stress in Diabetic Cardiomyopathy. Antioxidants (Basel). 2022;11(4):784. doi: https://doi.org/10.3390/antiox11040784

22. Hitsumoto T. Skin Autofluorescence as a Predictor of First Heart Failure Hospitalization in Patients With Heart Failure With Preserved Ejection Fraction. Cardiol Res. 2020;11(4):247-255. doi: https://doi.org/10.14740/cr1097

23. Zhao Y, Quan E, Zeng T, et al. Type 1 diabetes, its complications, and non-ischemic cardiomyopathy: a mendelian randomization study of European ancestry. Cardiovasc Diabetol. 2024;23(1):31. doi: https://doi.org/10.1186/s12933-023-02117-7

24. Tay J, Thompson CH, Brinkworth GD. Glycemic Variability: Assessing Glycemia Differently and the Implications for Dietary Management of Diabetes. Annu Rev Nutr. 2015;35:389-424. doi: https://doi.org/10.1146/annurev-nutr-121214-104422

25. Aragno M, Mastrocola R, Medana C, et al. Oxidative stress-dependent impairment of cardiac-specific transcription factors in experimental diabetes. Endocrinology. 2006;147(12):5967-5974. doi: https://doi.org/10.1210/en.2006-0728

26. Gu J, Fan YQ, Zhang JF, Wang CQ. Association of hemoglobin A1c variability and the incidence of heart failure with preserved ejection fraction in patients with type 2 diabetes mellitus and arterial hypertension. Hellenic J Cardiol. 2018;59(2):91-97. doi: https://doi.org/10.1016/j.hjc.2017.08.001

27. Yokota S, Tanaka H, Mochizuki Y, et al. Association of glycemic variability with left ventricular diastolic function in type 2 diabetes mellitus. Cardiovasc Diabetol. 2019;18(1):166. doi: https://doi.org/10.1186/s12933-019-0971-5

28. Agashe S, Petak S. Cardiac Autonomic Neuropathy in Diabetes Mellitus. Methodist Debakey Cardiovasc J. 2018;14(4):251-256. doi: https://doi.org/10.14797/mdcj-14-4-251

29. Asbun J, Villarreal FJ. The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol. 2006;47(4):693-700. doi: https://doi.org/10.1016/j.jacc.2005.09.050

30. Lisco G, De Tullio A, Iovino M, et al. Dopamine in the Regulation of Glucose Homeostasis, Pathogenesis of Type 2 Diabetes, and Chronic Conditions of Impaired Dopamine Activity/Metabolism: Implication for Pathophysiological and Therapeutic Purposes. Biomedicines. 2023;11(11):2993. doi: https://doi.org/10.3390/biomedicines11112993

31. Dhananjayan R, Koundinya KS, Malati T, Kutala VK. Endothelial Dysfunction in Type 2 Diabetes Mellitus. Indian J Clin Biochem. 2016;31(4):372-379. doi: https://doi.org/10.1007/s12291-015-0516-y

32. Wieczór R, Gadomska G, Ruszkowska-Ciastek B, et al. Impact of type 2 diabetes on the plasma levels of vascular endothelial growth factor and its soluble receptors type 1 and type 2 in patients with peripheral arterial disease. J Zhejiang Univ Sci B. 2015;16(11):948-956. doi: https://doi.org/10.1631/jzus.B1500076

33. Antsiferov MB, Lysenko MA, Markova TN, et al. Evolution of the prevalence of the cardiorenal continuum in hospitalized patients with type 2 diabetes in real clinical practice (experience of Moscow City Clinical Hospital No. 52 of Moscow Health Department). Endokrinologiya: novosti, mneniya, obuchenie [Endocrinology: News, Opinions, Training]. 2023;12(4):16–27. (In Russ.) doi: https://doi.org/10.33029/2304-9529-2023-12-4-16-27

34. McGavock JM, Lingvay I, Zib I, et al. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation. 2007;116(10):1170-1175. doi: https://doi.org/10.1161/CIRCULATIONAHA.106.645614

35. Sheikh AQ, Hurley JR, Huang W, et al. Diabetes alters intracellular calcium transients in cardiac endothelial cells. PLoS One. 2012;7(5):e36840. doi: https://doi.org/10.1371/journal.pone.0036840

36. Batista JPT, Faria AOV, Ribeiro TFS, Simões E Silva AC. The Role of Renin-Angiotensin System in Diabetic Cardiomyopathy: A Narrative Review. Life (Basel). 2023;13(7):1598. doi: https://doi.org/10.3390/life13071598

37. Yudaeva AD, Stafeev IS, Michurina SS, et al. The interactions between inflammation and insulin resistance: molecular mechanisms in insulin-producing and insulin-dependent tissues. Diabetes mellitus. 2023;26(1):75-81. (In Russ.) doi: https://doi.org/10.14341/DM12981

38. Chen WJ, Greulich S, van der Meer RW, et al. Activin A is associated with impaired myocardial glucose metabolism and left ventricular remodeling in patients with uncomplicated type 2 diabetes. Cardiovasc Diabetol. 2013;12:150. doi: https://doi.org/10.1186/1475-2840-12-150

39. Tsai YL, Chou RH, Kuo CS, et al. Circulating Activin A Is a Surrogate for the Incidence of Diastolic Dysfunction and Heart Failure in Patients With Preserved Ejection Fraction. Circ J. 2019;83(7):1514-1519. doi: https://doi.org/10.1253/circj.CJ-18-0837

40. Swan J, Szabó Z, Peters J, et al. Inhibition of activin receptor 2 signalling ameliorates metabolic dysfunction-associated steatotic liver disease in western diet/L-NAME induced cardiometabolic disease. Biomed Pharmacother. 2024;175:116683. doi: https://doi.org/10.1016/j.biopha.2024.116683

41. Maculewicz E, Antkowiak B, Antkowiak O, et al. IL-6 Polymorphisms Are Not Related to Obesity Parameters in Physically Active Young Men. Genes (Basel). 2021;12(10):1498. doi: https://doi.org/10.3390/genes12101498

42. Sethi JK, Hotamisligil GS. Metabolic Messengers: tumour necrosis factor. Nat Metab. 2021;3(10):1302-1312. doi: https://doi.org/10.1038/s42255-021-00470-z

43. Ramesh P, Yeo JL, Brady EM, McCann GP. Role of inflammation in diabetic cardiomyopathy. Ther Adv Endocrinol Metab. 2022;13:20420188221083530. doi: https://doi.org/10.1177/20420188221083530

44. Nakamura K, Miyoshi T, Yoshida M, et al. Pathophysiology and Treatment of Diabetic Cardiomyopathy and Heart Failure in Patients with Diabetes Mellitus. Int J Mol Sci. 2022;23(7):3587. doi: https://doi.org/10.3390/ijms23073587

45. Kotha S, Plein S, Greenwood JP, Levelt E. Role of epicardial adipose tissue in diabetic cardiomyopathy through the lens of cardiovascular magnetic resonance imaging - a narrative review. Ther Adv Endocrinol Metab. 2024;15:20420188241229540. doi: https://doi.org/10.1177/20420188241229540

46. Bai J, Gao C, Li X, et al. Correlation analysis of the abdominal visceral fat area with the structure and function of the heart and liver in obesity: a prospective magnetic resonance imaging study. Cardiovasc Diabetol. 2023;22(1):206. doi: https://doi.org/10.1186/s12933-023-01926-0

47. Zhao X, Liu S, Wang X, et al. Diabetic cardiomyopathy: Clinical phenotype and practice. Front Endocrinol (Lausanne). 2022;13:1032268. doi: https://doi.org/10.3389/fendo.2022.1032268

48. Ghosh N, Chacko L, Bhattacharya H, et al. Exploring the Complex Relationship between Diabetes and Cardiovascular Complications: Understanding Diabetic Cardiomyopathy and Promising Therapies. Biomedicines. 2023;11(4):1126. doi: https://doi.org/10.3390/biomedicines11041126

49. Sharma U, Chakraborty M, Chutia D, Bhuyan NR. Cellular and molecular mechanisms, genetic predisposition and treatment of diabetes-induced cardiomyopathy. Curr Res Pharmacol Drug Discov. 2022;3:100126. doi: https://doi.org/10.1016/j.crphar.2022.100126

50. Ritchie RH, Abel ED. Basic Mechanisms of Diabetic Heart Disease. Circ Res. 2020;126(11):1501-1525. doi: https://doi.org/10.1161/CIRCRESAHA.120.315913

51. Marx N, Federici M, Schütt K, et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes [published correction appears in Eur Heart J. 2023 Dec 21;44(48):5060. doi: 10.1093/eurheartj/ehad774] [published correction appears in Eur Heart J. 2024 Feb 16;45(7):518. doi: 10.1093/eurheartj/ehad857]. Eur Heart J. 2023;44(39):4043-4140. doi: https://doi.org/10.1093/eurheartj/ehad192

52. Dedov I, Shestakova M, Mayorov A, et al. Standards of Specialized Diabetes Care / Edited by Dedov II, Shestakova MV, Mayorov AYu. 11th Edition. Diabetes mellitus. 2023;26(2S):1-157. (In Russ). doi: https://doi.org/10.14341/DM13042

53. Kittleson MM, Panjrath GS, Amancherla K, et al. 2023 ACC Expert Consensus Decision Pathway on Management of Heart Failure With Preserved Ejection Fraction: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2023;81(18):1835-1878. doi: https://doi.org/10.1016/j.jacc.2023.03.393

54. Smiseth OA, Morris DA, Cardim N, et al. Multimodality imaging in patients with heart failure and preserved ejection fraction: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2022;23(2):e34-e61. doi: https://doi.org/10.1093/ehjci/jeab154

55. Mueller C, McDonald K, de Boer RA, et al. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur J Heart Fail. 2019;21(6):715-731. doi: https://doi.org/10.1002/ejhf.1494

56. Das SR, Drazner MH, Dries DL, et al. Impact of body mass and body composition on circulating levels of natriuretic peptides: results from the Dallas Heart Study. Circulation. 2005;112(14):2163-2168. doi: https://doi.org/10.1161/CIRCULATIONAHA.105.555573

57. Semenov AG, Postnikov AB, Tamm NN, et al. Processing of pro-brain natriuretic peptide is suppressed by O-glycosylation in the region close to the cleavage site. Clin Chem. 2009;55(3):489-498. doi: https://doi.org/10.1373/clinchem.2008.113373

58. Neeland IJ, Poirier P, Després JP. Cardiovascular and Metabolic Heterogeneity of Obesity: Clinical Challenges and Implications for Management. Circulation. 2018;137(13):1391-1406. doi: https://doi.org/10.1161/CIRCULATIONAHA.117.029617

59. Singh S, Pandey A, Neeland IJ. Diagnostic and prognostic considerations for use of natriuretic peptides in obese patients with heart failure. Prog Cardiovasc Dis. 2020;63(5):649-655. doi: https://doi.org/10.1016/j.pcad.2020.09.006

60. Madamanchi C, Alhosaini H, Sumida A, Runge MS. Obesity and natriuretic peptides, BNP and NT-proBNP: mechanisms and diagnostic implications for heart failure. Int J Cardiol. 2014;176(3):611-617. doi: https://doi.org/10.1016/j.ijcard.2014.08.007

61. Buckley LF, Canada JM, Del Buono MG, et al. Low NT-proBNP levels in overweight and obese patients do not rule out a diagnosis of heart failure with preserved ejection fraction. ESC Heart Fail. 2018;5(2):372-378. doi: https://doi.org/10.1002/ehf2.12235

62. Correction to: Cardiovascular-Kidney-Metabolic Health: A Presidential Advisory From the American Heart Association. Circulation. 2024;149(13):e1023. doi: https://doi.org/10.1161/CIR.0000000000001241


Supplementary files

Review

For citations:


Markova T.N., Ovchinnikova M.A., Shkodkina V.V., Belyaeva O.A. Diabetic cardiomyopathy: definition, right to exist. Diabetes mellitus. 2025;28(4):384-393. (In Russ.) https://doi.org/10.14341/DM13250

Views: 17


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)