Efficacy and safety of sodium-glucose cotransporter-2 inhibitors in type 2 diabetes mellitus with inadequate glycemic control on insulin: a network meta-analysis
https://doi.org/10.14341/DM13244
Abstract
The increase in the number of patients with type 2 diabetes mellitus (T2D) and mortality among them forces us to look for ways to optimize T2D treatment. At the same time, more than half of patients with an established diagnosis do not reach the glycemic targets and require intensification of therapy. Due to the progressive deterioration of the glycemic status, almost one in five T2D patients requires insulin therapy (IT), and over time, IT intensification with titration of the dose of insulin. This approach is limited by a few adverse effects such as: an increased risk of severe hypoglycemia, weight gain, decreased sodium excretion, which means fluid retention in the body, and the patient’s unwillingness to carry out complex therapy regimens. The addition of sodium-glucose cotransporter 2 (SGLT2i) inhibitor with an insulin–independent mechanism of action to the treatment is aimed to solve the problem of optimizing glycemic control in this category of T2D patients. The purpose of this network meta-analysis (NMA) was to indirectly compare the efficacy and safety of SGLT2 inhibitors added on top of insulin in T2D patients. The analysis included randomized clinical trials in which dapagliflozin, empagliflozin, ipragliflozin, luseogliflozin, and ertugliflozin were prescribed as SGLT2i. The primary endpoint was a change in glycated hemoglobin (HbA1c), and the secondary endpoints were changes in a mean of fasting plasma glucose, body weight and blood pressure, as well as the mean change in daily dose of insulin. The analysis of safety data included a comparative assessment of the incidence of hypoglycemia, reproductive tract and urogenital infections, and hypovolemia. The results of the conducted NMA demonstrate the comparable effectiveness of various SGLT2i regarding managing of glycemic status in T2D patients receiving insulin, along with commensurate safety and tolerability of therapy.
About the Authors
M. V. ShestakovaRussian Federation
Marina V. Shestakova - MD, PhD, Professor, Academician of the RAS; Scopus Author ID: 7004195530.
Moscow
Competing Interests:
нет
G. R. Galstyan
Russian Federation
Gagik R. Galstyan - MD, PhD, Professor; Scopus Author ID: 6701438348.
Moscow
Competing Interests:
нет
B. B. Kvasnikov
Russian Federation
Boris B. Kvasnikov
Moscow
Competing Interests:
являются штатными сотрудниками медицинского отдела АО «Сервье» (Россия)
E. E. Erina
Russian Federation
Ekaterina E. Erina
7 Lesnaya street, 125196 Moscow
Competing Interests:
являются штатными сотрудниками медицинского отдела АО «Сервье» (Россия)
References
1. Dedov II, Shestakova MV, Vikulova OK, et al. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010–2022. Diabetes mellitus. 2023;26(2):104-123. (In Russ.) https://doi.org/10.14341/DM13035
2. Rawshani A, Rawshani A, Franzén S, et al. Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2018;379(7):633-644. https://doi.org/10.1056/NEJMoa1800256
3. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20. https://doi.org/10.1038/414813a
4. Khunti K, Gomes MB, Pocock S, et al. Therapeutic inertia in the treatment of hyperglycaemia in patients with type 2 diabetes: A systematic review. Diabetes Obes Metab. 2018;20(2):427-437. https://doi.org/10.1111/dom.13088
5. Kronenberg G et al. Endokrinologiya po Vil’yamsu. Sakharnyi diabet i narusheniya uglevodnogo obmena; perevod s angl. Dedov II and Mel’nichenko GA, editors. Moscow: Elsevier; 2010. (In Russ.)
6. Stoekenbroek RM, Rensing KL, Bernelot Moens SJ, et al. High daily insulin exposure in patients with type 2 diabetes is associated with increased risk of cardiovascular events. Atherosclerosis. 2015;240:318-323. https://doi.org/10.1016/j.atherosclerosis.2015.03.040
7. Bonds DE, Miller ME, Bergenstal RM, et al. The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the ACCORD study. BMJ. 2010;340:b4909; https://doi.org/10.1136/bmj.b4909
8. Colayco DC, Niu F, McCombs JS, Cheetham TC. A1C and cardiovascular outcomes in type 2 diabetes: a nested case-control study. Diabetes Care. 2011;34:77-83. https://doi.org/10.2337/dc10-1318
9. Gamble JM, Simpson SH, Eurich DT, Majumdar SR, Johnson JA. Insulin use and increased risk of mortality in type 2 diabetes: a cohort study. Diabetes Obes Metab. 2010;12:47-53. https://doi.org/10.1111/j.1463-1326.2009.01125.x
10. Margolis DJ, Hoffstad O, Strom BL. Association between serious ischemic cardiac outcomes and medications used to treat diabetes. Pharmacoepidemiol Drug Saf. 2008;17(8):753-759. https://doi.org/10.1002/pds.1630
11. Wilding JP, Woo V, Soler NG, et al. Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin: a randomized trial. Ann Intern Med. 2012;156(6):405-415. https://doi.org/10.7326/0003-4819-156-6-201203200-00003
12. Sone H, Kaneko T, Shiki K, et al. Efficacy and safety of empagliflozin as add-on to insulin in Japanese patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2020;22(3):417-426. https://doi.org/10.1111/dom.13909
13. Shim SR, Kim SJ, Lee J, Rücker G. Network meta-analysis: application and practice using R software. Epidemiol Health. 2019;41:e2019013. https://doi.org/10.4178/epih.e2019013
14. Balduzzi S, Rücker G, Nikolakopoulou A, et al. netmeta : An R Package for Network Meta-Analysis Using Frequentist Methods. J Stat Softw. 2023;106(2). https://doi.org/10.18637/jss.v106.i02
15. Mbuagbaw L, Rochwerg B, Jaeschke R, et al. Approaches to interpreting and choosing the best treatments in network meta-analyses. Syst Rev. 2017;6(1):79. https://doi.org/10.1186/s13643-017-0473-z
16. Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Training. Available from: https://training.cochrane.org/handbook/current/chapter-13#section-13-3-5-2
17. Seino Y, Sasaki T, Fukatsu A, et al. Efficacy and safety of luseogliflozin added to insulin therapy in Japanese patients with type 2 diabetes: a multicenter, 52-week, clinical study with a 16-week, double-blind period and a 36-week, open-label period. Curr Med Res Opin. 2018;34(6):981-994. https://doi.org/10.1080/03007995.2018.1441816
18. Ishihara H, Yamaguchi S, Nakao I, Okitsu A, Asahina S. Efficacy and safety of ipragliflozin as add-on therapy to insulin in Japanese patients with type 2 diabetes mellitus (IOLITE): a multi-centre, randomized, placebo-controlled, double-blind study. Diabetes Obes Metab. 2016;18(12):1207-1216. https://doi.org/10.1111/dom.12745
19. Rosenstock J, Jelaska A, Zeller C, et al. Impact of empagliflozin added on to basal insulin in type 2 diabetes inadequately controlled on basal insulin: a 78-week randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2015;17(10):936-948. https://doi.org/10.1111/dom.12503
20. Lingvay I, Greenberg M, Gallo S, Shi H, Liu J, Gantz I. Efficacy and safety of ertugliflozin in patients with type 2 diabetes mellitus and established cardiovascular disease using insulin: A VERTIS CV substudy. Diabetes Obes Metab. 2021;23(7):1640-1651. https://doi.org/10.1111/dom.14385
21. Shyangdan DS, Uthman OA, Waugh N. SGLT-2 receptor inhibitors for treating patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. BMJ Open. 2016;6(2):e009417. https://doi.org/10.1136/bmjopen-2015-009417
22. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837-53. https://doi.org/10.1016/S0140-6736(98)07019-6
23. Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405-412. https://doi.org/10.1136/bmj.321.7258.405
24. Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol Metab. 2021;46:101102. https://doi.org/10.1016/j.molmet.2020.101102
25. Giugliano D, Maiorino MI, Bellastella G, et al. Glycemic Control, Preexisting Cardiovascular Disease, and Risk of Major Cardiovascular Events in Patients with Type 2 Diabetes Mellitus: Systematic Review With Meta-Analysis of Cardiovascular Outcome Trials and Intensive Glucose Control Trials. J Am Heart Assoc. 2019;8(12):e012356. https://doi.org/10.1161/JAHA.119.012356
26. Ali A, Bain S, Hicks D, et al. SGLT2 Inhibitors: Cardiovascular Benefits Beyond HbA1c-Translating Evidence into Practice [published correction appears in Diabetes Ther. 2019 Oct;10(5):1623-1624. doi: 10.1007/s13300-019-0670-y]. Diabetes Ther. 2019 Oct;10(5):1595-1622. https://doi.org/10.1007/s13300-019-0657-8
27. Li CX, Liu LY, Zhang CX, et al. Comparative safety of different sodium-glucose transporter 2 inhibitors in patients with type 2 diabetes: a systematic review and network meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne). 2023;14:1238399. https://doi.org/10.3389/fendo.2023.1238399
Supplementary files
|
1. Figure 1. Funnel plot: changes in glycated hemoglobin (%) after 16–24 weeks of treatment compared to baseline. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(261KB)
|
Indexing metadata ▾ |
Review
For citations:
Shestakova M.V., Galstyan G.R., Kvasnikov B.B., Erina E.E. Efficacy and safety of sodium-glucose cotransporter-2 inhibitors in type 2 diabetes mellitus with inadequate glycemic control on insulin: a network meta-analysis. Diabetes mellitus. 2024;27(6):543-554. (In Russ.) https://doi.org/10.14341/DM13244

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).