Preview

Diabetes mellitus

Advanced search

The influence of circadian rhythms on carbohydrate metabolism in health and in diabetes mellitus

https://doi.org/10.14341/DM13241

Abstract

Most processes in the human body and other living organisms are governed by biorhythms. The term biorhythms refers to periodically recurring changes in biological processes. Biological rhythms are genetically fixed and are crucial factors in natural selection and adaptation of organisms. In humans, circadian rhythms are regulated by central and peripheral clocks. The central clock is located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus, while peripheral clocks are found in various tissues and organs of the human body, including the brain, pancreas, liver, adipose tissue, gastrointestinal tract, and muscles. External and internal signals are in constant synchronization, ensuring homeostasis. A mismatch between internal biological clocks and external signals can lead to desynchronization of circadian rhythms. Desynchronization of the circadian rhythm may result in the onset of metabolically associated diseases, including the development of type 2 diabetes, obesity, and poorer glycemic control. This article examines the impact of circadian rhythms on biological processes and hormone secretion, as well as the relationship between circadian rhythms and glucose metabolism in individuals with type 2 diabetes and normoglycemia.

About the Authors

I. V. Misnikova
Moscow Regional Research Clinical Institute named after M.F. Vladimirsky
Russian Federation

Inna V. Misnikova - MD, PhD; ScopusAuthor ID: 559756; eLibrary SPIN: 3614-3011.

Moscow


Competing Interests:

none



D. E. Zoloeva
Moscow Regional Research Clinical Institute named after M.F. Vladimirsky
Russian Federation

Dzerassa Е. Zoloeva – MD.

61/2 Shchepkina street, 129110 Moscow


Competing Interests:

none



References

1. Lu X, Xie Q, Pan X, et al. Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Signal Transduct Target Ther. 2024;9(1):262. Doi: https://doi.org/10.1038/s41392-024-01951-9

2. Zimmet P, Alberti KGMM, Stern N, et al. The Circadian Syndrome: is the Metabolic Syndrome and much more! J Intern Med. 2019;286(2):181-191. Doi: https://doi.org/10.1111/joim.12924

3. Shi Z, Tuomilehto J, Kronfeld-Schor N, et al. The circadian syndrome predicts cardiovascular disease better than metabolic syndrome in Chinese adults. J Intern Med. 2021;289(6):851-860. Doi: https://doi.org/10.1111/joim.13204

4. Poggiogalle E, Jamshed H, Peterson CM. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism. 2018;84:11-27. Doi: https://doi.org/10.1016/j.metabol.2017.11.017

5. Sakai S, Tanaka Y, Tsukamoto Y, et al. D -Alanine Affects the Circadian Clock to Regulate Glucose Metabolism in the Kidney. Kidney360. 2024;5(2):237-251. Doi: https://doi.org/10.34067/KID.0000000000000345

6. Gamble KL, Berry R, Frank SJ, Young ME. Circadian clock control of endocrine factors. Nat Rev Endocrinol. 2014;10(8):466-475. Doi: https://doi.org/10.1038/nrendo.2014.78

7. Harfmann BD, Schroder EA, Esser KA. Circadian rhythms, the molecular clock, and skeletal muscle. J Biol Rhythms. 2015;30(2):84-94. Doi: https://doi.org/10.1177/0748730414561638

8. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012;35:445-462. Doi: https://doi.org/10.1146/annurev-neuro-060909-153128

9. Takahashi JS, Hong HK, Ko CH, mcdearmon EL. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet. 2008;9(10):764-775. Doi: https://doi.org/10.1038/nrg2430

10. den Boon FS, Sarabdjitsingh RA. Circadian and ultradian patterns of HPA-axis activity in rodents: Significance for brain functionality. Best Pract Res Clin Endocrinol Metab. 2017;31(5):445-457. Doi: https://doi.org/10.1016/j.beem.2017.09.001

11. Baron KG, Reid KJ. Circadian misalignment and health. Int Rev Psychiatry. 2014;26(2):139-154. Doi: https://doi.org/10.3109/09540261.2014.911149

12. Li W, Wang Z, Cao J, Dong Y, Chen Y. Perfecting the Life Clock: The Journey from PTO to TTFL. Int J Mol Sci. 2023;24(3):2402. Doi: https://doi.org/10.3390/ijms24032402

13. Sorokin MY, Pinkhasov BB, Selyatitskaya VG. Circadian rhythm of carbohydrate metabolism in health and disease. Acta Biomedica Scientifica. 2023;8(2):124-137 (In Russ.) Doi: https://doi.org/10.29413/ABS.2023-8.2.12

14. Hudec M, Dankova P, Solc R, et al. Epigenetic Regulation of Circadian Rhythm and Its Possible Role in Diabetes Mellitus. Int J Mol Sci. 2020;21(8):3005. Doi: https://doi.org/10.3390/ijms21083005

15. Cheng H, Zhong D, Tan Y, et al. Advancements in research on the association between the biological CLOCK and type 2 diabetes. Front Endocrinol (Lausanne). 2024;15:1320605. Doi: https://doi.org/10.3389/fendo.2024.1320605

16. Miyamoto Y, Sancar A. Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc Natl Acad Sci USA. 1998;95(11):6097-6102. Doi: https://doi.org/10.1073/pnas.95.11.6097

17. Institute of Medicine (US) Committee on Sleep Medicine and Research. Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem. / Ed. By Colten HR, Altevogt BM, editors. National Academies Press (US); Washington (DC): 2006

18. Vieira E, Merino B, Quesada I. Role of the clock gene Rev-erbα in metabolism and in the endocrine pancreas. Diabetes Obes Metab. 2015;17(Suppl 1):106-114. Doi: https://doi.org/10.1111/dom.12522

19. Walker WH, Hecmarie MF, Becker-Krail O, et al. Biological Clocks and Immune Function. In: Konsman, J.P., Reyes, T.M. (eds) Neuroendocrine-Immune System Interactions. Masterclass in Neuroendocrinology. 2023;13. Doi: https://doi.org/10.1007/978-3-031-21358-8_11

20. Stenvers DJ, Scheer FAJL, Schrauwen P, et al. Circadian clocks and insulin resistance. Nat Rev Endocrinol. 2019;15(2):75-89. Doi: https://doi.org/10.1038/s41574-018-0122-1

21. Jakubowicz D, Wainstein J, Tsameret S, Landau Z. Role of High Energy Breakfast «Big Breakfast Diet» in Clock Gene Regulation of Postprandial Hyperglycemia and Weight Loss in Type 2 Diabetes. Nutrients. 2021;13(5):1558. Doi: https://doi.org/10.3390/nu13051558

22. Morris CJ, Yang JN, Garcia JI, et al. Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. Proc Natl Acad Sci U S A. 2015;112(17):E2225-E2234. Doi: https://doi.org/10.1073/pnas.1418955112

23. Saad A, Dalla Man C, Nandy DK, et al. Diurnal pattern to insulin secretion and insulin action in healthy individuals. Diabetes. 2012;61(11):2691-2700. Doi: https://doi.org/10.2337/db11-1478

24. Boden G, Ruiz J, Urbain JL, Chen X. Evidence for a circadian rhythm of insulin secretion. Am J Physiol. 1996;271(2 Pt 1):E246-E252. Doi: https://doi.org/10.1152/ajpendo.1996.271.2.E246

25. Adam EK, Quinn ME, Tavernier R, et al. Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis. Psychoneuroendocrinology. 2017;83:25-41. Doi: https://doi.org/10.1016/j.psyneuen.2017.05.018

26. Morais JBS, Severo JS, Beserra JB, et al. Association Between Cortisol, Insulin Resistance and Zinc in Obesity: a Mini-Review. Biol Trace Elem Res. 2019;191(2):323-330. Doi: https://doi.org/10.1007/s12011-018-1629-y

27. Gómez-Abellán P, Díez-Noguera A, Madrid JA, Luján JA, Ordovás JM, Garaulet M. Glucocorticoids affect 24 h clock genes expression in human adipose tissue explant cultures. Plos One. 2012;7(12):e50435. Doi: https://doi.org/10.1371/journal.pone.0050435

28. bahammam AS, Pirzada A. Timing Matters: The Interplay between Early Mealtime, Circadian Rhythms, Gene Expression, Circadian Hormones, and Metabolism-A Narrative Review. Clocks Sleep. 2023;5(3):507-535. Doi: https://doi.org/10.3390/clockssleep5030034

29. Xiao Q, Bauer C, Layne T, Playdon M. The association between overnight fasting and body mass index in older adults: the interaction between duration and timing. Int J Obes (Lond). 2021;45(3):555-564. Doi: https://doi.org/10.1038/s41366-020-00715-z

30. Chawla S, Beretoulis S, Deere A, Radenkovic D. The Window Matters: A Systematic Review of Time Restricted Eating Strategies in Relation to Cortisol and Melatonin Secretion. Nutrients. 2021;13(8):2525. Doi: https://doi.org/10.3390/nu13082525

31. Vasey C, mcbride J, Penta K. Circadian Rhythm Dysregulation and Restoration: The Role of Melatonin. Nutrients. 2021;13(10):3480. Doi: https://doi.org/10.3390/nu13103480

32. Hudec M, Dankova P, Solc R, et al. Epigenetic Regulation of Circadian Rhythm and Its Possible Role in Diabetes Mellitus. Int J Mol Sci. 2020;21(8):3005. Doi: https://doi.org/10.3390/ijms21083005

33. Buonfiglio D, Parthimos R, Dantas R, et al. Melatonin Absence Leads to Long-Term Leptin Resistance and Overweight in Rats. Front Endocrinol (Lausanne). 2018;9:122. Doi: https://doi.org/10.3389/fendo.2018.00122

34. Peng F, Li X, Xiao F, Zhao R, Sun Z. Circadian clock, diurnal glucose metabolic rhythm, and dawn phenomenon. Trends Neurosci. 2022;45(6):471-482. Doi: https://doi.org/10.1016/j.tins.2022.03.010

35. Serin Y, Acar Tek N. Effect of Circadian Rhythm on Metabolic Processes and the Regulation of Energy Balance. Ann Nutr Metab. 2019;74(4):322-330. Doi: https://doi.org/10.1159/000500071

36. Davis R, Rogers M, Coates AM, et al. The Impact of Meal Timing on Risk of Weight Gain and Development of Obesity: a Review of the Current Evidence and Opportunities for Dietary Intervention. Curr Diab Rep. 2022;22(4):147-155. Doi: https://doi.org/10.1007/s11892-022-01457-0

37. Garaulet M, Gómez-Abellán P. Timing of food intake and obesity: a novel association. Physiol Behav. 2014;134:44-50. Doi: https://doi.org/10.1016/j.physbeh.2014.01.001

38. Palomar-Cros A, Srour B, Andreeva VA, et al. Associations of meal timing, number of eating occasions and night-time fasting duration with incidence of type 2 diabetes in the nutrinet-Santé cohort. Int J Epidemiol. 2023;52(5):1486-1497. Doi: https://doi.org/10.1093/ije/dyad081

39. Nas A, Mirza N, Hägele F, et al. Impact of breakfast skipping compared with dinner skipping on regulation of energy balance and metabolic risk. Am J Clin Nutr. 2017;105(6):1351-1361. Doi: https://doi.org/10.3945/ajcn.116.151332

40. Peschke E, Peschke D, Hammer T, Csernus V. Influence of melatonin and serotonin on glucose-stimulated insulin release from perifused rat pancreatic islets in vitro. J Pineal Res. 1997;23(3):156-163. Doi: https://doi.org/10.1111/j.1600-079x.1997.tb00349.x

41. Damiola F, Le Minh N, Preitner N, et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14(23):2950-2961. Doi: https://doi.org/10.1101/gad.183500

42. Kohsaka A, Laposky AD, Ramsey KM, et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 2007;6(5):414-421. Doi: https://doi.org/10.1016/j.cmet.2007.09.006

43. Akbar Z, Shi Z. Dietary Patterns and Circadian Syndrome among Adults Attending NHANES 2005-2016. Nutrients. 2023;15(15):3396. Doi: https://doi.org/10.3390/nu15153396

44. Zisapel N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol. 2018;175(16):3190-3199. Doi: https://doi.org/10.1111/bph.14116

45. van der Velde JHP, Rutters F, Rosendaal FR, et al. Associations between chronotype waist circumference, visceral fat, liver fat, and incidence of type 2 diabetes. 60th EASD Annual Meeting of the European Association for the Study of Diabetes [abstract]. 2024;283:S146. Doi: https://doi.org/10.1007/s00125-024-06226-0

46. Kudielka BM, Federenko IS, Hellhammer DH, Wüst S. Morningness and eveningness: the free cortisol rise after awakening in «early birds» and «night owls». Biol Psychol. 2006;72(2):141-146. Doi: https://doi.org/10.1016/j.biopsycho.2005.08.003

47. Nelaeva YV, Rymar OD, Petrov IM, et al. The role of individual organization of circadian rhythms in the formation of carbohydrate metabolism disorders. Diabetes mellitus. 2023;26(3):224-235. (In Russ.). Doi: https://doi.org/10.14341/DM12909

48. Karlsson B. Commentary: Metabolic syndrome as a result of shift work exposure?. Int J Epidemiol. 2009;38(3):854-855. Doi: https://doi.org/10.1093/ije/dyp190

49. De Bacquer D, Van Risseghem M, Clays E, et al. Rotating shift work and the metabolic syndrome: a prospective study. Int J Epidemiol. 2009;38(3):848-854. Doi: https://doi.org/10.1093/ije/dyn360

50. Knutsson A. Health disorders of shift workers. Occup Med (Lond). 2003;53(2):103-108. Doi: https://doi.org/10.1093/occmed/kqg048

51. White AJ, Kresovich JK, Xu Z, et al. Shift work, DNA methylation and epigenetic age. Int J Epidemiol. 2019;48(5):1536-1544. Doi: https://doi.org/10.1093/ije/dyz027

52. Cedernaes J, Schönke M, Westholm JO, et al. Acute sleep loss results in tissue-specific alterations in genome-wide DNA methylation state and metabolic fuel utilization in humans. Sci Adv. 2018;4(8):eaar8590. Doi: https://doi.org/10.1126/sciadv.aar8590

53. Fatima N, Rana S. Metabolic implications of circadian disruption. Pflugers Arch. 2020;472(5):513-526. Doi: https://doi.org/10.1007/s00424-020-02381-6

54. Hariri A, Mirian M, Zarrabi A, et al. The circadian rhythm: an influential soundtrack in the diabetes story. Front Endocrinol (Lausanne). 2023;14:1156757. Doi: https://doi.org/10.3389/fendo.2023.1156757

55. Engin A. Circadian Rhythms in Diet-Induced Obesity. Adv Exp Med Biol. 2017;960:19-52. Doi: https://doi.org/10.1007/978-3-319-48382-5_2

56. Meng X, Li Y, Li S, et al. Dietary Sources and Bioactivities of Melatonin. Nutrients. 2017;9(4):367. Doi: https://doi.org/10.3390/nu9040367

57. Sutanto CN, Loh WW, Kim JE. The impact of tryptophan supplementation on sleep quality: a systematic review, meta-analysis, and meta-regression. Nutr Rev. 2022;80(2):306-316. Doi: https://doi.org/10.1093/nutrit/nuab027

58. Surme S, Ergun C, Gul S, et al. TW68, cryptochromes stabilizer, regulates fasting blood glucose levels in diabetic ob/ob and high fat-diet-induced obese mice. Biochem Pharmacol. 2023;218:115896. Doi: https://doi.org/10.1016/j.bcp.2023.115896

59. Barnea M, Haviv L, Gutman R, et al. Metformin affects the circadian clock and metabolic rhythms in a tissue-specific manner. Biochim Biophys Acta. 2012;1822(11):1796-1806. Doi: https://doi.org/10.1016/j.bbadis.2012.08.005

60. Vieira E, Marroquí L, Figueroa AL, et al. Involvement of the clock gene Rev-erb alpha in the regulation of glucagon secretion in pancreatic alpha-cells. Plos One. 2013;8(7):e69939. Doi: https://doi.org/10.1371/journal.pone.0069939

61. Alex A, Luo Q, Mathew D, Di R, Bhatwadekar AD. Metformin Corrects Abnormal Circadian Rhythm and Kir4.1 Channels in Diabetes. Invest Ophthalmol Vis Sci. 2020;61(6):46. Doi: https://doi.org/10.1167/iovs.61.6.46

62. Yang SC, Tseng HL, Shieh KR. Circadian-clock system in mouse liver affected by insulin resistance. Chronobiol Int. 2013;30(6):796-810. Doi: https://doi.org/10.3109/07420528.2013.766204

63. Fedchenko T, Izmailova O, Shynkevych V, et al. PPAR-γ Agonist Pioglitazone Restored Mouse Liver mrna Expression of Clock Genes and Inflammation-Related Genes Disrupted by Reversed Feeding. PPAR Res. 2022;2022:7537210. Doi: https://doi.org/10.1155/2022/7537210


Supplementary files

Review

For citations:


Misnikova I.V., Zoloeva D.E. The influence of circadian rhythms on carbohydrate metabolism in health and in diabetes mellitus. Diabetes mellitus. 2025;28(4):367-375. (In Russ.) https://doi.org/10.14341/DM13241

Views: 18


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)