Preview

Сахарный диабет

Расширенный поиск

Влияние циркадных ритмов на углеводный обмен в норме и при сахарном диабете

https://doi.org/10.14341/DM13241

Аннотация

Большинство процессов в организме человека и других живых организмов подчинено биоритмам. Под термином «Биоритмы» понимают периодически повторяющиеся изменения биологических процессов. Биологические ритмы наследственно закреплены и являются важнейшими факторами естественного отбора и адаптации организмов. Циркадные ритмы у человека регулируются центральными и периферическими часами. Центральные часы расположены в супрахиазматическом ядре (СЯГ) переднего гипоталамуса, а периферические часы находятся в различных тканях и органах организма человека, включая мозг, поджелудочную железу, печень, жировую ткань, желудочно-кишечный тракт и мышцы. Внешние и внутренние сигналы находятся в постоянной синхронизации и обеспечивают гомеостаз. Несоответствие внутренних биологических часов с внешними сигналами может приводить к десинхронизации циркадных ритмов. Десинхронизация циркадного ритма может приводить к возникновению метаболически-ассоциированных заболеваний, в том числе к развитию сахарного диабета 2 типа (СД2), ожирению и к худшему контролю гликемии. В этой статье рассматриваются влияние циркадных ритмов на биологические процессы и на секрецию гормонов, также связь между циркадными ритмами и метаболизмом глюкозы у людей с СД2 и нормогликемией.

Об авторах

И. В. Мисникова
Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского
Россия

Мисникова Инна Владимировна - д.м.н.; ScopusAuthor ID: 559756; eLibrary SPIN: 3614-3011.

Москва


Конфликт интересов:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи



Д. Э. Золоева
Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского
Россия

Золоева Дзерасса Эльбрусовна

129110, Москва, ул. Щепкина, д. 61/2


Конфликт интересов:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи



Список литературы

1. Lu X, Xie Q, Pan X, et al. Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Signal Transduct Target Ther. 2024;9(1):262. Doi: https://doi.org/10.1038/s41392-024-01951-9

2. Zimmet P, Alberti KGMM, Stern N, et al. The Circadian Syndrome: is the Metabolic Syndrome and much more! J Intern Med. 2019;286(2):181-191. Doi: https://doi.org/10.1111/joim.12924

3. Shi Z, Tuomilehto J, Kronfeld-Schor N, et al. The circadian syndrome predicts cardiovascular disease better than metabolic syndrome in Chinese adults. J Intern Med. 2021;289(6):851-860. Doi: https://doi.org/10.1111/joim.13204

4. Poggiogalle E, Jamshed H, Peterson CM. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism. 2018;84:11-27. Doi: https://doi.org/10.1016/j.metabol.2017.11.017

5. Sakai S, Tanaka Y, Tsukamoto Y, et al. D -Alanine Affects the Circadian Clock to Regulate Glucose Metabolism in the Kidney. Kidney360. 2024;5(2):237-251. Doi: https://doi.org/10.34067/KID.0000000000000345

6. Gamble KL, Berry R, Frank SJ, Young ME. Circadian clock control of endocrine factors. Nat Rev Endocrinol. 2014;10(8):466-475. Doi: https://doi.org/10.1038/nrendo.2014.78

7. Harfmann BD, Schroder EA, Esser KA. Circadian rhythms, the molecular clock, and skeletal muscle. J Biol Rhythms. 2015;30(2):84-94. Doi: https://doi.org/10.1177/0748730414561638

8. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012;35:445-462. Doi: https://doi.org/10.1146/annurev-neuro-060909-153128

9. Takahashi JS, Hong HK, Ko CH, mcdearmon EL. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet. 2008;9(10):764-775. Doi: https://doi.org/10.1038/nrg2430

10. den Boon FS, Sarabdjitsingh RA. Circadian and ultradian patterns of HPA-axis activity in rodents: Significance for brain functionality. Best Pract Res Clin Endocrinol Metab. 2017;31(5):445-457. Doi: https://doi.org/10.1016/j.beem.2017.09.001

11. Baron KG, Reid KJ. Circadian misalignment and health. Int Rev Psychiatry. 2014;26(2):139-154. Doi: https://doi.org/10.3109/09540261.2014.911149

12. Li W, Wang Z, Cao J, Dong Y, Chen Y. Perfecting the Life Clock: The Journey from PTO to TTFL. Int J Mol Sci. 2023;24(3):2402. Doi: https://doi.org/10.3390/ijms24032402

13. Сорокин М.Ю., Пинхасов Б.Б., Селятицкая В.Г. Циркадный ритм углеводного обмена в норме и при патологии // Acta Biomedica Scientifica. — 2023. — Т. 8. — №2. — С. 124-137. Doi: https://doi.org/10.29413/ABS.2023-8.2.12

14. Hudec M, Dankova P, Solc R, et al. Epigenetic Regulation of Circadian Rhythm and Its Possible Role in Diabetes Mellitus. Int J Mol Sci. 2020;21(8):3005. Doi: https://doi.org/10.3390/ijms21083005

15. Cheng H, Zhong D, Tan Y, et al. Advancements in research on the association between the biological CLOCK and type 2 diabetes. Front Endocrinol (Lausanne). 2024;15:1320605. Doi: https://doi.org/10.3389/fendo.2024.1320605

16. Miyamoto Y, Sancar A. Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc Natl Acad Sci USA. 1998;95(11):6097-6102. Doi: https://doi.org/10.1073/pnas.95.11.6097

17. Institute of Medicine (US) Committee on Sleep Medicine and Research. Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem. / Ed. By Colten HR, Altevogt BM, editors. National Academies Press (US); Washington (DC): 2006

18. Vieira E, Merino B, Quesada I. Role of the clock gene Rev-erbα in metabolism and in the endocrine pancreas. Diabetes Obes Metab. 2015;17(Suppl 1):106-114. Doi: https://doi.org/10.1111/dom.12522

19. Walker WH, Hecmarie MF, Becker-Krail O, et al. Biological Clocks and Immune Function. In: Konsman, J.P., Reyes, T.M. (eds) Neuroendocrine-Immune System Interactions. Masterclass in Neuroendocrinology. 2023;13. Doi: https://doi.org/10.1007/978-3-031-21358-8_11

20. Stenvers DJ, Scheer FAJL, Schrauwen P, et al. Circadian clocks and insulin resistance. Nat Rev Endocrinol. 2019;15(2):75-89. Doi: https://doi.org/10.1038/s41574-018-0122-1

21. Jakubowicz D, Wainstein J, Tsameret S, Landau Z. Role of High Energy Breakfast «Big Breakfast Diet» in Clock Gene Regulation of Postprandial Hyperglycemia and Weight Loss in Type 2 Diabetes. Nutrients. 2021;13(5):1558. Doi: https://doi.org/10.3390/nu13051558

22. Morris CJ, Yang JN, Garcia JI, et al. Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. Proc Natl Acad Sci U S A. 2015;112(17):E2225-E2234. Doi: https://doi.org/10.1073/pnas.1418955112

23. Saad A, Dalla Man C, Nandy DK, et al. Diurnal pattern to insulin secretion and insulin action in healthy individuals. Diabetes. 2012;61(11):2691-2700. Doi: https://doi.org/10.2337/db11-1478

24. Boden G, Ruiz J, Urbain JL, Chen X. Evidence for a circadian rhythm of insulin secretion. Am J Physiol. 1996;271(2 Pt 1):E246-E252. Doi: https://doi.org/10.1152/ajpendo.1996.271.2.E246

25. Adam EK, Quinn ME, Tavernier R, et al. Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis. Psychoneuroendocrinology. 2017;83:25-41. Doi: https://doi.org/10.1016/j.psyneuen.2017.05.018

26. Morais JBS, Severo JS, Beserra JB, et al. Association Between Cortisol, Insulin Resistance and Zinc in Obesity: a Mini-Review. Biol Trace Elem Res. 2019;191(2):323-330. Doi: https://doi.org/10.1007/s12011-018-1629-y

27. Gómez-Abellán P, Díez-Noguera A, Madrid JA, Luján JA, Ordovás JM, Garaulet M. Glucocorticoids affect 24 h clock genes expression in human adipose tissue explant cultures. Plos One. 2012;7(12):e50435. Doi: https://doi.org/10.1371/journal.pone.0050435

28. bahammam AS, Pirzada A. Timing Matters: The Interplay between Early Mealtime, Circadian Rhythms, Gene Expression, Circadian Hormones, and Metabolism-A Narrative Review. Clocks Sleep. 2023;5(3):507-535. Doi: https://doi.org/10.3390/clockssleep5030034

29. Xiao Q, Bauer C, Layne T, Playdon M. The association between overnight fasting and body mass index in older adults: the interaction between duration and timing. Int J Obes (Lond). 2021;45(3):555-564. Doi: https://doi.org/10.1038/s41366-020-00715-z

30. Chawla S, Beretoulis S, Deere A, Radenkovic D. The Window Matters: A Systematic Review of Time Restricted Eating Strategies in Relation to Cortisol and Melatonin Secretion. Nutrients. 2021;13(8):2525. Doi: https://doi.org/10.3390/nu13082525

31. Vasey C, mcbride J, Penta K. Circadian Rhythm Dysregulation and Restoration: The Role of Melatonin. Nutrients. 2021;13(10):3480. Doi: https://doi.org/10.3390/nu13103480

32. Hudec M, Dankova P, Solc R, et al. Epigenetic Regulation of Circadian Rhythm and Its Possible Role in Diabetes Mellitus. Int J Mol Sci. 2020;21(8):3005. Doi: https://doi.org/10.3390/ijms21083005

33. Buonfiglio D, Parthimos R, Dantas R, et al. Melatonin Absence Leads to Long-Term Leptin Resistance and Overweight in Rats. Front Endocrinol (Lausanne). 2018;9:122. Doi: https://doi.org/10.3389/fendo.2018.00122

34. Peng F, Li X, Xiao F, Zhao R, Sun Z. Circadian clock, diurnal glucose metabolic rhythm, and dawn phenomenon. Trends Neurosci. 2022;45(6):471-482. Doi: https://doi.org/10.1016/j.tins.2022.03.010

35. Serin Y, Acar Tek N. Effect of Circadian Rhythm on Metabolic Processes and the Regulation of Energy Balance. Ann Nutr Metab. 2019;74(4):322-330. Doi: https://doi.org/10.1159/000500071

36. Davis R, Rogers M, Coates AM, et al. The Impact of Meal Timing on Risk of Weight Gain and Development of Obesity: a Review of the Current Evidence and Opportunities for Dietary Intervention. Curr Diab Rep. 2022;22(4):147-155. Doi: https://doi.org/10.1007/s11892-022-01457-0

37. Garaulet M, Gómez-Abellán P. Timing of food intake and obesity: a novel association. Physiol Behav. 2014;134:44-50. Doi: https://doi.org/10.1016/j.physbeh.2014.01.001

38. Palomar-Cros A, Srour B, Andreeva VA, et al. Associations of meal timing, number of eating occasions and night-time fasting duration with incidence of type 2 diabetes in the nutrinet-Santé cohort. Int J Epidemiol. 2023;52(5):1486-1497. Doi: https://doi.org/10.1093/ije/dyad081

39. Nas A, Mirza N, Hägele F, et al. Impact of breakfast skipping compared with dinner skipping on regulation of energy balance and metabolic risk. Am J Clin Nutr. 2017;105(6):1351-1361. Doi: https://doi.org/10.3945/ajcn.116.151332

40. Peschke E, Peschke D, Hammer T, Csernus V. Influence of melatonin and serotonin on glucose-stimulated insulin release from perifused rat pancreatic islets in vitro. J Pineal Res. 1997;23(3):156-163. Doi: https://doi.org/10.1111/j.1600-079x.1997.tb00349.x

41. Damiola F, Le Minh N, Preitner N, et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14(23):2950-2961. Doi: https://doi.org/10.1101/gad.183500

42. Kohsaka A, Laposky AD, Ramsey KM, et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 2007;6(5):414-421. Doi: https://doi.org/10.1016/j.cmet.2007.09.006

43. Akbar Z, Shi Z. Dietary Patterns and Circadian Syndrome among Adults Attending NHANES 2005-2016. Nutrients. 2023;15(15):3396. Doi: https://doi.org/10.3390/nu15153396

44. Zisapel N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol. 2018;175(16):3190-3199. Doi: https://doi.org/10.1111/bph.14116

45. van der Velde JHP, Rutters F, Rosendaal FR, et al. Associations between chronotype waist circumference, visceral fat, liver fat, and incidence of type 2 diabetes. 60th EASD Annual Meeting of the European Association for the Study of Diabetes [abstract]. 2024;283:S146. Doi: https://doi.org/10.1007/s00125-024-06226-0

46. Kudielka BM, Federenko IS, Hellhammer DH, Wüst S. Morningness and eveningness: the free cortisol rise after awakening in «early birds» and «night owls». Biol Psychol. 2006;72(2):141-146. Doi: https://doi.org/10.1016/j.biopsycho.2005.08.003

47. Нелаева Ю.В., Рымар О.Д., Петров И.М., и др. Роль индивидуальной организации суточных ритмов в формировании нарушений углеводного обмена // Сахарный диабет. — 2023. — Т. 26. — №3. — С. 224-235. Doi: https://doi.org/10.14341/DM12909

48. Karlsson B. Commentary: Metabolic syndrome as a result of shift work exposure?. Int J Epidemiol. 2009;38(3):854-855. Doi: https://doi.org/10.1093/ije/dyp190

49. De Bacquer D, Van Risseghem M, Clays E, et al. Rotating shift work and the metabolic syndrome: a prospective study. Int J Epidemiol. 2009;38(3):848-854. Doi: https://doi.org/10.1093/ije/dyn360

50. Knutsson A. Health disorders of shift workers. Occup Med (Lond). 2003;53(2):103-108. Doi: https://doi.org/10.1093/occmed/kqg048

51. White AJ, Kresovich JK, Xu Z, et al. Shift work, DNA methylation and epigenetic age. Int J Epidemiol. 2019;48(5):1536-1544. Doi: https://doi.org/10.1093/ije/dyz027

52. Cedernaes J, Schönke M, Westholm JO, et al. Acute sleep loss results in tissue-specific alterations in genome-wide DNA methylation state and metabolic fuel utilization in humans. Sci Adv. 2018;4(8):eaar8590. Doi: https://doi.org/10.1126/sciadv.aar8590

53. Fatima N, Rana S. Metabolic implications of circadian disruption. Pflugers Arch. 2020;472(5):513-526. Doi: https://doi.org/10.1007/s00424-020-02381-6

54. Hariri A, Mirian M, Zarrabi A, et al. The circadian rhythm: an influential soundtrack in the diabetes story. Front Endocrinol (Lausanne). 2023;14:1156757. Doi: https://doi.org/10.3389/fendo.2023.1156757

55. Engin A. Circadian Rhythms in Diet-Induced Obesity. Adv Exp Med Biol. 2017;960:19-52. Doi: https://doi.org/10.1007/978-3-319-48382-5_2

56. Meng X, Li Y, Li S, et al. Dietary Sources and Bioactivities of Melatonin. Nutrients. 2017;9(4):367. Doi: https://doi.org/10.3390/nu9040367

57. Sutanto CN, Loh WW, Kim JE. The impact of tryptophan supplementation on sleep quality: a systematic review, meta-analysis, and meta-regression. Nutr Rev. 2022;80(2):306-316. Doi: https://doi.org/10.1093/nutrit/nuab027

58. Surme S, Ergun C, Gul S, et al. TW68, cryptochromes stabilizer, regulates fasting blood glucose levels in diabetic ob/ob and high fat-diet-induced obese mice. Biochem Pharmacol. 2023;218:115896. Doi: https://doi.org/10.1016/j.bcp.2023.115896

59. Barnea M, Haviv L, Gutman R, et al. Metformin affects the circadian clock and metabolic rhythms in a tissue-specific manner. Biochim Biophys Acta. 2012;1822(11):1796-1806. Doi: https://doi.org/10.1016/j.bbadis.2012.08.005

60. Vieira E, Marroquí L, Figueroa AL, et al. Involvement of the clock gene Rev-erb alpha in the regulation of glucagon secretion in pancreatic alpha-cells. Plos One. 2013;8(7):e69939. Doi: https://doi.org/10.1371/journal.pone.0069939

61. Alex A, Luo Q, Mathew D, Di R, Bhatwadekar AD. Metformin Corrects Abnormal Circadian Rhythm and Kir4.1 Channels in Diabetes. Invest Ophthalmol Vis Sci. 2020;61(6):46. Doi: https://doi.org/10.1167/iovs.61.6.46

62. Yang SC, Tseng HL, Shieh KR. Circadian-clock system in mouse liver affected by insulin resistance. Chronobiol Int. 2013;30(6):796-810. Doi: https://doi.org/10.3109/07420528.2013.766204

63. Fedchenko T, Izmailova O, Shynkevych V, et al. PPAR-γ Agonist Pioglitazone Restored Mouse Liver mrna Expression of Clock Genes and Inflammation-Related Genes Disrupted by Reversed Feeding. PPAR Res. 2022;2022:7537210. Doi: https://doi.org/10.1155/2022/7537210


Дополнительные файлы

Рецензия

Для цитирования:


Мисникова И.В., Золоева Д.Э. Влияние циркадных ритмов на углеводный обмен в норме и при сахарном диабете. Сахарный диабет. 2025;28(4):367-375. https://doi.org/10.14341/DM13241

For citation:


Misnikova I.V., Zoloeva D.E. The influence of circadian rhythms on carbohydrate metabolism in health and in diabetes mellitus. Diabetes mellitus. 2025;28(4):367-375. (In Russ.) https://doi.org/10.14341/DM13241

Просмотров: 13


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)