Preview

Diabetes mellitus

Advanced search

Haplotypic cluster of fatty acid desaturase genes FADS1, FADS2 and type 2 diabetes mellitus in Yakutsk

https://doi.org/10.14341/DM13230

Abstract

BACKGROUND: According to the International Diabetes Federation (IDF) in 2021, one in ten adults worldwide suffers from diabetes, of which 90% have type 2 diabetes (T2D). Numerous studies indicate that blood PUFA levels affect lipid metabolism. Blood PUFA levels are affected not only by their dietary intake, but also by their metabolism by desaturase enzymes encoded by the fatty acid desaturase 1 (FADS1) and fatty acid desaturase 2 (FADS2) genes.

AIM: To study the contribution of the FADS1, FADS2 genes to the risk of developing type 2 diabetes mellitus among the Yakut population.

MATERIALS AND METHODS: A total of 541 volunteers, ethnic Yakuts up to the third generation, participated in the study. The sample of patients with type 2 diabetes mellitus consisted of 95 patients from the endocrinology department of the Republican Hospital No. 2 of the State Budgetary Institution “Emergency Medical Care Center”. The comparison group was a sample of 446 volunteers without chronic diseases. A group of healthy Yakuts was divided into subgroups based on body mass index (BMI). Single nucleotide polymorphisms were determined by polymerase chain reaction (PCR) followed by restriction fragment length polymorphism (RFLP) analysis.

RESULTS: The present study established a high frequency of ancestral alleles for SNP rs174537 (72.8 - 78.1%), for SNP rs174546 (71.3–78.1%) and for the deletion rs3834458 (72.8–77.5%) in Yakut populations. Analysis of the strength of the association of alleles and genotypes of the FADS1 / FASD2 genes with type 2 diabetes did not show statistically significant values. Analysis of pairwise linkage disequilibrium and assessment of haplotypes for the studied polymorphisms was r2=0.93-1.00. An association of the TTT haplotype with type 2 diabetes mellitus, which was 14.5 times more common in patients, was revealed.

CONCLUSION: The results of this study may provide input for future nutrition and diet research to examine the effects of dietary PUFA exposure on the epigenetic regulation of PUFA biosynthesis and metabolism. Further work is needed to elucidate the specific mechanisms by which the FADS gene cluster and diet influence LC PUFA levels in humans and how they influence inflammation and disease.

About the Authors

N. I. Pavlova
Yakut Science Center of Complex Medical Problems
Russian Federation

Nadezhda I. Pavlova - PhD in Biology; Researcher ID: S-8030-2018; Scopus Author ID: 57222060706; eLibrary SPIN: 6167-5254.

23 Kosmofizicheskaya street, 677007 Yakutsk, Republic of Sakha (Yakutia)


Competing Interests:

none



A. V. Krylov
Yakut Science Center of Complex Medical Problems
Russian Federation

Alexey V. Krylov - Scopus Author ID: 58534986300; eLibrary SPIN: 5746-3015.

Yakutsk


Competing Interests:

none



A. A. Bochurov
Yakut Science Center of Complex Medical Problems
Russian Federation

Alexey A. Bochurov - Researcher ID: HPG-8119-2023; Scopus Author ID: 57488486500; eLibrary SPIN: 1853-0018.

Yakutsk


Competing Interests:

none



K. A. Kurtanov
M.K. Ammosov North-Eastern Federal University
Russian Federation

Khariton A. Kurtanov - PhD; Researcher ID: B-2071-2014; eLibrary SPIN:  8254-3787.

Yakutsk


Competing Interests:

none



References

1. International Diabetes Federation, 2021 [интернет] [доступ от 01.08.2024]. Доступ по ссылке: https://idf.org/

2. Dedov II, Shestakova MV, Vikulova OK, et al. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010–2022. Diabetes mellitus. 2023;26(2):104-123. (In Russ.)] doi: https://doi.org/10.14341/DM13035

3. Ogurtsova K, Guariguata L, Barengo NC, et al. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res Clin Pract. 2022;183:109118. doi: https://doi.org/10.1016/j.diabres.2021.109118

4. Demidova TY, Zenina SG. Molecular genetic features of the diabetes mellitus development and the possibility of precision therapy. Diabetes mellitus. 2020;23(5):467-474. (In Russ.). doi: https://doi.org/10.14341/DM12486

5. Blonde L, Umpierrez GE, Reddy SS, et al. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan-2022 Update. Endocr Pract. 2022;28(10):923-1049. doi: https://doi.org/10.1016/j.eprac.2022.08.002

6. Kirk LM, Waits CMK, Bashore AC, et al. Exploiting three-dimensional human hepatic constructs to investigate the impact of rs174537 on fatty acid metabolism. PLoS One. 2022;17(1):e0262173. doi: https://doi.org/10.1371/journal.pone.0262173

7. Juan J, Huang H, Jiang X, et al. Joint effects of fatty acid desaturase 1 polymorphisms and dietary polyunsaturated fatty acid intake on circulating fatty acid proportions. Am J Clin Nutr. 2018;107(5):826-833. doi: https://doi.org/10.1093/ajcn/nqy025

8. Chen X, Wu Y, Zhang Z, et al. Effects of the rs3834458 Single Nucleotide Polymorphism in FADS2 on Levels of n-3 Long-chain Polyunsaturated Fatty Acids: A Meta-analysis. Prostaglandins Leukot Essent Fatty Acids. 2019;150:1-6. doi: https://doi.org/10.1016/j.plefa.2019.08.005

9. Haploview v. 4.2 [интернет] [доступ от 01.08.2024]. Доступ по ссылке: http://www.broadinstitute.org/scientific-community/science/programs/medical-and-population-genetics/haploview/haploview

10. Ensembl [интернет]. Ensembl genome browser [доступ от 01.08.2024]. Доступ по ссылке: https://www.ensembl.org/index.html

11. Žák A, Jáchymová M, Burda M, et al. FADS Polymorphisms Affect the Clinical and Biochemical Phenotypes of Metabolic Syndrome. Metabolites. 2022;12(6):568. doi: https://doi.org/10.3390/metabo12060568

12. Mansouri V, Javanmard SH, Mahdavi M, Tajedini MH. Association of Polymorphism in Fatty Acid Desaturase Gene with the Risk of Type 2 Diabetes in Iranian Population. Adv Biomed Res. 2018;7:98. doi: https://doi.org/10.4103/abr.abr_131_17

13. Kothapalli KS, Ye K, Gadgil MS, et al. Positive Selection on a Regulatory Insertion-Deletion Polymorphism in FADS2 Influences Apparent Endogenous Synthesis of Arachidonic Acid. Mol Biol Evol. 2016;33(7):1726-1739. doi: https://doi.org/10.1093/molbev/msw049

14. Fumagalli M, Moltke I, Grarup N, et al. Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science. 2015;349(6254):1343-1347. doi: https://doi.org/10.1126/science.aab2319

15. Buckley MT, Racimo F, Allentoft ME, et al. Selection in Europeans on Fatty Acid Desaturases Associated with Dietary Changes. Mol Biol Evol. 2017;34(6):1307-1318. doi: https://doi.org/10.1093/molbev/msx103

16. Harris DN, Ruczinski I, Yanek LR, et al. Evolution of Hominin Polyunsaturated Fatty Acid Metabolism: From Africa to the New World. Genome Biol Evol. 2019;11(5):1417-1430. doi: https://doi.org/10.1093/gbe/evz071

17. Li SW, Wang J, Yang Y, et al. Polymorphisms in FADS1 and FADS2 alter plasma fatty acids and desaturase levels in type 2 diabetic patients with coronary artery disease. J Transl Med. 2016;14:79. doi: https://doi.org/10.1186/s12967-016-0834-8

18. Muzsik A, Jeleń HH, Chmurzynska A. Metabolic syndrome in postmenopausal women is associated with lower erythrocyte PUFA/MUFA and n-3/n-6 ratio: A case-control study. Prostaglandins Leukot Essent Fatty Acids. 2020;159:102155. doi: https://doi.org/10.1016/j.plefa.2020.102155

19. Mishina EE, Mayorov AY, Bogomolov PO, et al. Nonalcoholic fatty liver disease: cause or consequence of insulin resistance? Diabetes mellitus. 2017;20(5):335-343. (In Russ.). doi: https://doi.org/10.14341/DM9372

20. Sivtseva TM, Klimova TM, Ammosova EP, Zakharova RN, Osakovsky VL. Lipid Metabolism and Metabolic Disorders in theYakut Population: a Literature Review. Ekologiya cheloveka (Human Ecology). 2021;28(4):4-14. (In Russ.) doi: https://doi.org/10.33396/1728-0869-2021-4-4-14

21. Pavlova NI, Bochurov AA, Alekseev VA, et al. The variability of PNPLA3 gene as a potential marker of cold adaptation in Yakuts. Int J Circumpolar Health. 2023;82(1):2246647. doi: https://doi.org/10.1080/22423982.2023.2246647

22. Luo Z, Liu Y, Li H, et al. Associations of PNPLA3 rs738409 Polymorphism with Plasma Lipid Levels: A Systematic Review and Meta-Analysis. Horm Metab Res. 2022;54(10):686-695. doi: https://doi.org/10.1055/a-1929-1677

23. Krarup NT, Grarup N, Banasik K, et al. The PNPLA3 rs738409 G-allele associates with reduced fasting serum triglyceride and serum cholesterol in Danes with impaired glucose regulation. PLoS One. 2012;7(7):e40376. doi: https://doi.org/10.1371/journal.pone.0040376

24. Conway MC, McSorley EM, Mulhern MS, Strain JJ, van Wijngaarden E, Yeates AJ. Influence of fatty acid desaturase (FADS) genotype on maternal and child polyunsaturated fatty acids (PUFA) status and child health outcomes: a systematic review. Nutr Rev. 2020;78(8):627-646. doi: https://doi.org/10.1093/nutrit/nuz086

25. de la Garza Puentes A, Montes Goyanes R, Chisaguano Tonato AM, et al. Association of maternal weight with FADS and ELOVL genetic variants and fatty acid levels- The PREOBE follow-up. PLoS One. 2017;12(6):e0179135. doi: https://doi.org/10.1371/journal.pone.0179135


Review

For citations:


Pavlova N.I., Krylov A.V., Bochurov A.A., Kurtanov K.A. Haplotypic cluster of fatty acid desaturase genes FADS1, FADS2 and type 2 diabetes mellitus in Yakutsk. Diabetes mellitus. 2025;28(4):304-312. (In Russ.) https://doi.org/10.14341/DM13230

Views: 33


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)