Preview

Сахарный диабет

Расширенный поиск

Этнофармакологические аспекты управления сахарным диабетом: исследование лекарственной флоры Шиваликского хребта Гималаев в Уттаракханде

https://doi.org/10.14341/DM13080

Аннотация

Сахарный диабет (СД) — это хроническое метаболическое расстройство, которое часто приводит к угрожающим жизни заболеваниям и постоянно снижает ожидаемую продолжительность жизни. Он характеризуется гипергликемией, возникающей в результате нарушения секреции инсулина, его действия или того и другого. На протяжении тысячелетий наши предки использовали лекарственные растения для профилактики, лечения или даже излечения СД. В последние два-три десятилетия использование этих травяных растений стремительно возросло благодаря их меньшей токсичности и экономической эффективности по сравнению с синтетическими препаратами. В этом обзоре описано около 30 лекарственных растений, которые являются родными для Индии и традиционно используются жителями Шиваликского хребта Гималаев в Уттаракханде (особенно в Дехрадуне и Харидваре) для лечения СД. Данные о этих растениях были собраны из Science Direct, PubMed, Web of Science, Scopus, MDPI, Google Scholar и других поисковых систем и веб-сайтов. Обзор представлен в систематизированном виде, включая ботаническое название, семью, народные названия, используемые части и фармакологическое применение растений в табличной форме. Имеются различные научные доказательства применения некоторых лекарственных растений, которые также упоминаются вместе с кратким описанием каждого из них. Все растения и травы, рассмотренные в этом обзоре, легко доступны в этих районах Уттаракханда, и местные жители традиционно используют их как овощи, приправы и ароматизаторы, обычно включая в свой рацион. Существуют некоторые ограничения фитотерапии, которые не позволяют ей полностью заменить аллопатическую терапию, такие как низкая биодоступность, медленная скорость абсорбции и медленная скорость растворения. Однако с использованием различных современных лекарственных форм (фитосомы, неосомы, липосомы, наночастицы, нанопузырьки, наноалмазы, наношары и т. д.) и методов доставки (различные инвазивные и неинвазивные методы), можно обойти все проблемы, связанные с потенцией и эффективностью фитохимических веществ.

Об авторах

S. Kumar
Университет График Эра Хилл
Индия

Уттаракханд


Конфликт интересов:

нет



A. Kumar
Институт фармации, Калинга Университет
Индия

Райпур, Чхаттисгарх


Конфликт интересов:

нет



J. Tantray
Институт фармации NIMS, NIMS Университет Жайпур
Индия

Раджастан


Конфликт интересов:

нет



A. Shukla
Университет График Эра Хилл
Индия

Уттаракханд


Конфликт интересов:

нет



Список литературы

1. WHO. (2023). Diabetes. World Health Organisation. https://www.who.int/health-topics/diabetes

2. Knwal, S. Diabetes in India-statistics & facts. Health,Pharma and Medtech. Sanyukta Kanwal. Retrieved February 7, 2023, https://www.statista.com/topics/10473/diabetes-in-india/

3. Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research And Clinical Practice. 2022;183:109119. https://doi.org/10.1016/j.diabres.2021.109119

4. Magliano DJ, Chen L, Islam RM, et al. Trends in the incidence of diagnosed diabetes: a multicountry analysis of aggregate data from 22 million diagnoses in high-income and middle-income settings. The Lancet Diabetes & Endocrinology. 2021;9(4):203-11. https://doi.org/10.1016/S2213-8587(20)30402-2

5. Patton KT, Thibodeau GA. Anthony’s Textbook of Anatomy & Physiology-E-Book. Elsevier Health Sciences; 2018 Mar 5. https://shop.elsevier.com/books/anthonys-textbook-of-anatomy-and-physiology/patton/978-0-323-52880-1

6. Joshua SR, Shin S, Lee JH, Kim SK. Health to Eat: A Smart Plate with Food Recognition, Classification, and Weight Measurement for Type-2 Diabetic Mellitus Patients’ Nutrition Control. Sensors. 2023;23(3):1656. https://doi.org/10.3390/s23031656

7. Banasik JL. Pathophysiology-E-Book. Elsevier Health Sciences; 2021 May 29. https://books.google.com/books/about/Pathophysiology_E_Book.html?id=2ZgwEAAAQBAJ

8. Shojima N, Yamauchi T. Progress in genetics of type 2 diabetes and diabetic complications. Journal Of Diabetes Investigation. 2023;14(4):503-15. https://doi.org/10.1111/jdi.13970

9. Hinault C, Caroli-Bosc P, Bost F, Chevalier N. Critical overview on endocrine disruptors in diabetes mellitus. International Journal Of Molecular Sciences. 2023;24(5):4537. https://doi.org/10.3390/ijms24054537

10. Desai A, Chen R, Cayetano A, et al. Understanding and treating ejaculatory dysfunction in men with diabetes mellitus. Andrology. 2023;11(2):379-98. https://doi.org/10.1111/andr.13262

11. Jagetia GC. Antidiabetogenic action of jamun Syzygium cumini Skeels: a review. Int J Complement Alt Med. 2023;16(2):88-97. https://doi.org/10.15406/ijcam.2023.16.00636

12. Srivastava S, Chandra D. Pharmacological potentials of Syzygium cumini: a review. Journal Of The Science Of Food And Agriculture. 2013;93(9):2084-93. https://doi.org/10.1002/jsfa.6111

13. Franco RR, Zabisky LF, de Lima Júnior JP, et al. Antidiabetic effects of Syzygium cumini leaves: A non-hemolytic plant with potential against process of oxidation, glycation, inflammation and digestive enzymes catalysis. Journal Of Ethnopharmacology. 2020; 261:113132. https://doi.org/10.1016/j.jep.2020.113132

14. Sharma S, Pathak S, Gupta G, et al. Pharmacological evaluation of aqueous extract of syzigium cumini for its antihyperglycemic and antidyslipidemic properties in diabetic rats fed a high cholesterol diet—Role of PPARγ and PPARα. Biomedicine & Pharmacotherapy. 2017; 89:447-53. https://doi.org/10.1016/j.biopha.2017.02.048

15. Sharma K, Kumar V, Kumar S, et al. Bauhinia variegata: a comprehensive review on bioactive compounds, health benefits and utilization. Advances In Traditional Medicine. 2021; 21:645-53. https://doi.org/10.1007/s13596-020-00472-4

16. Tripathi AK, Gupta PS, Singh SK. Antidiabetic, anti-hyperlipidemic and antioxidant activities of Bauhinia variegata flower extract. Biocatalysis And Agricultural Biotechnology. 2019; 19:101142. https://doi.org/10.1016/j.bcab.2019.101142

17. Bakshi A, Sharma N, Nagpal AK. Comparative evaluation of in vitro antioxidant and antidiabetic potential of five ethnomedicinal plant species from Punjab, India. South African Journal Of Botany. 2022;150: 478-87.https://doi.org/10.1016/j.sajb.2022.08.019

18. Chanda R, Ghosh A, Mitra T, et al. Phytochemical and pharmacological activity of Aegle marmelos as a potential medicinal plant: An overview. The Internet Journal Of Pharmacology. 2008;6(1):3. https://doi.org/10.1016/j.joim.2018.04.007

19. Ibrahim M, Parveen B, Zahiruddin S, et al. Analysis of polyphenols in Aegle marmelos leaf and ameliorative efficacy against diabetic mice through restoration of antioxidant and anti‐inflammatory status. Journal Of Food Biochemistry. 2022;46(4):e13852. https://doi.org/10.1111/jfbc.13852

20. Ahmad W, Amir M, Ahmad A, et al. Aegle marmelos leaf extract phytochemical analysis, cytotoxicity, in vitro antioxidant and antidiabetic activities. Plants. 2021;10(12):2573. https://doi.org/10.3390/plants10122573

21. Islas JF, Acosta E, Zuca G, et al. An overview of Neem (Azadirachta indica) and its potential impact on health. Journal Of Functional Foods. 2020; 74:104171. https://doi.org/10.1016/j.jff.2020.104171

22. Patil SM, Shirahatti PS, Ramu R. Azadirachta indica A. Juss (neem) against diabetes mellitus: A critical review on its phytochemistry, pharmacology, and toxicology. Journal Of Pharmacy And Pharmacology. 2022;74(5):681-710. https://doi.org/10.1093/jpp/rgab098

23. Satyanarayana K, Sravanthi K, Shaker IA, Ponnulakshmi R. Molecular approach to identify antidiabetic potential of Azadirachta indica. Journal Of Ayurveda And Integrative Medicine. 2015;6(3):165. https://doi.org/10.4103/0975-9476.157950

24. Islas JF, Acosta E, Zuca G, et al. An overview of Neem (Azadirachta indica) and its potential impact on health. Journal Of Functional Foods. 2020;74:104171

25. Patel SM, Nagulapalli Venkata KC, Bhattacharyya P, Sethi G, Bishayee A. Potential of neem (Azadirachta indica L.) for prevention and treatment of oncologic diseases. Semin Cancer Biol. 2016;40-41:100-115. https://doi.org/10.1016/j.semcancer.2016.03.002

26. Lisanti E, Sajuthi D, Agil M, et al. The effect of aqueous seed extract of neem (Azadirachta indica A. Juss) on liver histology of male mice (Mus musculus albinus). AIP Conf. Proc. 10 October 2018; 2019;(1):060004. https://doi.org/10.1063/1.5061913

27. Batista FLA, Lima LMG, Abrante IA, et al. Antinociceptive activity of ethanolic extract of Azadirachta indica A. Juss (Neem, Meliaceae) fruit through opioid, glutamatergic and acid-sensitive ion pathways in adult zebrafish (Danio rerio). Biomed Pharmacother. 2018;108:408-416. https://doi.org/10.1016/j.biopha.2018.08.160

28. Deng YX, Cao M, Shi DX, et al. Toxicological evaluation of neem (Azadirachta indica) oil: acute and subacute toxicity. Environ Toxicol Pharmacol. 2013;35(2):240-246. https://doi.org/10.1016/j.etap.2012.12.015

29. Joseph B, Jini D. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pacific Journal Of Tropical Disease. 2013;3(2):93-102. https://doi.org/10.1016/S2222-1808(13)60052-3

30. Jiang S, Xu L, Xu Y, et al. Antidiabetic effect of Momordica charantia saponins in rats induced by high-fat diet combined with STZ. Electronic Journal Of Biotechnology. 2020;43:41-7. https://doi.org/10.1016/j.ejbt.2019.12.001

31. Richter E, Geetha T, Burnett D, Broderick TL, Babu JR. The Effects of Momordica charantia on Type 2 Diabetes Mellitus and Alzheimer’s Disease. Int J Mol Sci. 2023;24(5):4643. https://doi.org/10.3390/ijms24054643

32. Yedjou CG, Grigsby J, Mbemi A, et al. The Management of Diabetes Mellitus Using Medicinal Plants and Vitamins. Int J Mol Sci. 2023;24(10):9085. Published 2023 May 22. https://doi.org/10.3390/ijms24109085

33. Khan MF, Abutaha N, Nasr FA, Alqahtani AS, Noman OM, Wadaan MAM. Bitter gourd (Momordica charantia) possess developmental toxicity as revealed by screening the seeds and fruit extracts in zebrafish embryos. BMC Complement Altern Med. 2019;19(1):184. https://doi.org/10.1186/s12906-019-2599-0

34. Abdillah S, Inayah B, Febrianti AB, Nafisa S. Acute and Subchronic Toxicity of Momordica Charantia L Fruits Ethanolic Extract in Liver and Kidney. Systematic Reviews in Pharmacy. 2020;11(12):2249-2255

35. Grandjean P. Paracelsus Revisited: The Dose Concept in a Complex World. Basic Clin Pharmacol Toxicol. 2016;119(2):126-132. https://doi.org/10.1111/bcpt.12622

36. Oyelere SF, Ajayi OH, Ayoade TE, et al. A detailed review on the phytochemical profiles and anti-diabetic mechanisms of Momordicacharantia [published correction appears in Heliyon. 2023 Nov 02;9(11):e22019. doi: 10.1016/j.heliyon.2023.e22019]. Heliyon. 2022;8(4):e09253. https://doi.org/10.1016/j.heliyon.2022.e09253

37. Zameer S, Najmi AK, Vohora D, Akhtar M. A review on therapeutic potentials of Trigonella foenum graecum (fenugreek) and its chemical constituents in neurological disorders: Complementary roles to its hypolipidemic, hypoglycemic, and antioxidant potential. Nutritional Neuroscience. 2018;21(8):539-45. https://doi.org/10.1080/1028415X.2017.1327200

38. Najdi RA, Hagras MM, Kamel FO, Magadmi RM. A randomized controlled clinical trial evaluating the effect of Trigonella foenum-graecum (fenugreek) versus glibenclamide in patients with diabetes. African Health Sciences. 2019;19(1):1594-601. https://doi.org/10.4314/ahs.v19i1.34

39. Geberemeskel GA, Debebe YG, Nguse NA. Antidiabetic effect of fenugreek seed powder solution (Trigonella foenum-graecum L.) on hyperlipidemia in diabetic patients. Journal Of Diabetes Research. 2019;2019. https://doi.org/10.1155/2019/8507453

40. Muraki E, Hayashi Y, Chiba H, et al. Dose-dependent effects, safety and tolerability of fenugreek in diet-induced metabolic disorders in rats. Lipids in Health and Disease. 2011;10:1-6. https://doi.org/10.1186%2F1476-511X-10-240

41. Khalki L, M’hamed SB, Bennis M, Chait A, Sokar Z. Evaluation of the developmental toxicity of the aqueous extract from Trigonella foenum-graecum (L.) in mice. J Ethnopharmacol. 2010;131(2):321-325. https://doi.org/10.1016/j.jep.2010.06.033

42. Khalki L, Bennis M, Sokar Z, Ba-M’hamed S. The developmental neurobehavioral effects of fenugreek seeds on prenatally exposed mice. J Ethnopharmacol. 2012;139(2):672-677. https://doi.org/10.1016/j.jep.2011.12.011

43. Yadav UC, Baquer NZ. Pharmacological effects of Trigonella foenum-graecum L. in health and disease. Pharm Biol. 2014;52(2):243-254. https://doi.org/10.3109/13880209.2013.826247

44. Tiwari P, Mishra BN, Sangwan NS. Phytochemical and pharmacological properties of Gymnema sylvestre: an important medicinal plant. BioMed Research International. 2014; 2014:830285. https://doi.org/10.1155/2014/830285

45. Baskaran K, Ahamath BK, Shanmugasundaram KR, Shanmugasundaram ER. Antidiabetic effect of a leaf extract from Gymnema sylvestre in non-insulin-dependent diabetes mellitus patients. Journal Of Ethnopharmacology. 1990;30(3):295-305. https://doi.org/10.1016/0378-8741(90)90108-6

46. Shiyovich A, Nesher L, Sztarkier I. Toxic hepatitis induced by Gymnema sylvestre, a natural remedy for type 2 diabetes mellitus. The American Journal Of The Medical Sciences. 2010 Dec 1;340(6):514-7

47. Khare AK, Tondon RN, Tewari JP. Hypoglycaemic activity of an indigenous drug (Gymnema sylvestre,’Gurmar’) in normal and diabetic persons. Indian J Physiol Pharmacol. 1983;27(3):257-258.

48. Singh D, Chaudhuri PK. A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.). Industrial Crops and Products. 2018; 118:367-82. https://doi.org/10.1016/j.indcrop.2018.03.048

49. Parajuli-Baral K. Formulation and Evaluation of Quality Parameters of Effervescent Granules from the Potent Antioxidant between Two Variants of the Adaptogenic Herb Ocimum tenuiflorum L. The Scientific World Journal. 2023;2023. https://doi.org/10.1155/2023/2050846

50. Ononamadu CJ, Alhassan AJ, Imam AA, et al. In vitro and in vivo anti-diabetic and anti-oxidant activities of methanolic leaf extracts of Ocimum canum. Caspian Journal Of Internal Medicine. 2019;10(2):162. https://doi.org/10.22088/cjim.10.2.162.

51. Sharma AD, Kaur I, Angish S, et al. Comparative phytochemistry, antioxidant, antidiabetic, and anti-inflammatory activities of traditionally used Ocimum basilicum L. Ocimum gratissimum L., and Ocimum tenuiflorum L. BioTechnologia. 2022;103(2):131. https://doi.org/10.5114/bta.2022.116206

52. Cohen MM. Tulsi-Ocimum sanctum: A herb for all reasons. Journal Of Ayurveda And Integrative Medicine. 2014;5(4):251. https://doi.org/10.4103%2F0975-9476.146554

53. Thakur Ashish. 28. Holy Basil (Ocimum Sanctum)- A Comprehensive Review of Traditional Uses, Phytochemical Composition, Medicinal Properties and Future Directions. The Journal of Agricultural Education and Extension. 3. 136-151.

54. Arunachalam K, Yang X, San TT. Tinospora cordifolia (Willd.) Miers: Protection mechanisms and strategies against oxidative stress-related diseases. Journal of Ethnopharmacology. 2022; 283:114540. https://doi.org/10.1016/j.jep.2021.114540

55. Jain A, Dasgupta N, Ranjan S, et al. Whey protein based electrosprayed nanospheres for encapsulation and controlled release of bioactive compounds from Tinospora cordifolia extract. Innovative Food Science & Emerging Technologies. 2021;69:102671. https://doi.org/10.1016/j.ifset.2021.102671

56. Jain A, Chhajed M, Saluja MS, et al. Treatment of Diabetes with Indian Herbs and Herbal Medicines: A Review. International Journal of Pharmacy & Life Sciences, 14(3). Available at: https://search.ebscohost.com/login.aspx?direct=true&db=afh&AN=164596463&site=ehost-live

57. Kumari A. Ayurvedic Treatment and Home Remedies for Type-2 Diabetes Mellitus. Socio-Scientific Interaction in Diabetes and Cancer and Its Management, 416. https://doi.org/10.9734/bpi/mono/978-81-968135-7-4/CH31

58. Gupta RS, Sharma A. Antifertility effect of Tinospora cordifolia (Willd.) stem extract in male rats. Indian J Exp Biol. 2003 Aug;41(8):885-9.

59. Sanie-Jahromi F, Zia Z, Afarid M. A review on the effect of garlic on diabetes, BDNF, and VEGF as a potential treatment for diabetic retinopathy. Chinese Medicine. 2023;18(1):18. https://doi.org/10.1186/s13020-023-00725-

60. Eidi A, Eidi M, Esmaeili E. Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine. 2006;13(9-10):624-9. https://doi.org/10.1016/j.phymed.2005.09.010

61. Çiçek SS. Momordica charantia L.—Diabetes-related bioactivities, quality control, and safety considerations. Frontiers in Pharmacology. 2022; 13:904643. https://doi.org/10.3389/fphar.2022.904643

62. Al-Snafi AE. Medicinal plants with hypoglycemic effect: A review. GSC Biological and Pharmaceutical Sciences. 2023;24(1):147-173. https://doi.org/10.30574/gscbps.2023.24.1.0274

63. Okoro BC, Dokunmu TM, Okafor E, et al. The ethnobotanical, bioactive compounds, pharmacological activities and toxicological evaluation of garlic (Allium sativum): A review. Pharmacological Research-Modern Chinese Medicine. 2023;8. https://doi.org/10.1016/j.prmcm.2023.100273

64. Ozma MA, Abbasi A, Ahangarzadeh Rezaee M, et al. A critical review on the nutritional and medicinal profiles of garlic’s (Allium sativum L.) bioactive compounds. Food Reviews International. 2022;39(9):6324-6361. doi: 10.1080/87559129.2022.2100417

65. Kim HL, Choi BK, Yang SH. Terminalia chebula Medicinal Uses: A Review of in vitro and in vivo Studies. Biotechnology and Bioprocess Engineering. 2022;27(5):729-39. https://doi.org/10.1007/s12257-022-0090-0

66. Wikipedia. Terminalia chebula. Available at: https://en.wikipedia.org/w/index.php?title=Terminalia_chebula&oldid=1149490400

67. Jahan F, Alvi SS, Islam MH. Berberis aristata and its secondary metabolites: Insights into nutraceutical and therapeutical applications. Pharmacological Research-Modern Chinese Medicine. 2022;5. https://doi.org/10.1016/j.prmcm.2022.100184

68. Saikat AS, Hossain R, Mina FB, et al. Antidiabetic effect of garlic. Revista Brasileira de Farmacognosia. 2021;32:1-11. https://doi.org/10.1007/s43450-021-00193-y

69. Gupta RC, Chang D, Nammi S, et al. Interactions between antidiabetic drugs and herbs: an overview of mechanisms of action and clinical implications. Diabetology & Metabolic Syndrome. 2017;9(1):1-2. https://doi.org/10.1186/s13098-017-0254-9

70. Sharma P, Joshi T, Mathpal S, et al. In silico identification of antidiabetic target for phytochemicals of A. marmelos and mechanistic insights by molecular dynamics simulations. Journal Of Biomolecular Structure And Dynamics. 2022;40(21):10543-60. https://doi.org/10.1080/07391102.2021.1944910

71. Manandhar B, Paudel KR, Sharma B, Karki R. Phytochemical profile and pharmacological activity of Aegle marmelos Linn. Journal Of Integrative Medicine. 2018;16(3):153-63. https://doi.org/10.1016/j.joim.2018.04.007

72. Song MY, Bae UJ, Lee BH, et al. Nardostachys jatamansi extract protects against cytokine-induced β-cell damage and streptozotocin-induced diabetes. World Journal Of Gastroenterology. 2010;16(26):3249. https://doi.org/10.3748/wjg.v16.i26.3249

73. Kaur H, Lekhak MM, Chahal S, et al. Nardostachys jatamansi (D. Don) DC.: An invaluable and constantly dwindling resource of the Himalayas. South African Journal Of Botany. 2020;135:252-67. https://doi.org/10.1016/j.sajb.2020.08.010

74. Aryal B, Adhikari B, Aryal N, et al. LC-HRMS profiling and antidiabetic, antioxidant, and antibacterial activities of Acacia catechu (Lf) willd. Biomed Research International. 2021; 2021:758871. https://doi.org/10.1155/2021/7588711

75. Adhikari B, Aryal B, Bhattarai BR. A Comprehensive Review on the Chemical Composition and Pharmacological Activities of Acacia catechu (Lf) Willd. Journal Of Chemistry. 2021;2021:1-1. https://doi.org/10.1155/2021/2575598

76. Yadav V, Krishnan A, Vohora D. A systematic review on Piper longum L.: Bridging traditional knowledge and pharmacological evidence for future translational research. Journal Of Ethnopharmacology. 2020;247:112255. https://doi.org/10.1016/j.jep.2019.112255

77. Nabi SA, Kasetti RB, Sirasanagandla S, et al. Antidiabetic and antihyperlipidemic activity of Piper longum root aqueous extract in STZ induced diabetic rats. BMC Complementary And Alternative Medicine. 2013;13:1-9. https://doi.org/10.1186/1472-6882-13-37

78. Gou GH, Liu L, Abdubakiev S, et al. Anti‐Diabetic Effects and Molecular Mechanisms of Amide Alkaloids from Piper longum Based on Network Pharmacology Integrated with Cellular Assays. Chemistry & Biodiversity. 2023;20(1):e202200904. https://doi.org/10.1002/cbdv.202200904

79. Antora RA, Salleh RM. Antihyperglycemic effect of Ocimum plants: A short review. Asian Pacific Journal Of Tropical Biomedicine. 2017 Aug 1;7(8):755-9. https://doi.org/10.1016/j.apjtb.2017.07.010

80. Dai Y, Chen SR, Chai L, et al. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Critical Reviews In Food Science And Nutrition. 2019;59(sup1):S17-29. https://doi.org/10.1080/10408398.2018.1501657

81. Suemanotham N, Phochantachinda S, Chatchaisak D, et al. Antidiabetic effects of Andrographis paniculata supplementation on biochemical parameters, inflammatory responses, and oxidative stress in canine diabetes. Frontiers In Pharmacology. 2023; 14:1077228. https://doi.org/10.3389/fphar.2023.1077228

82. Danao K, Kale S, Rokde V, et al. In Silico Prediction of Antidiabetic Activity of Phytoconstituents of Pterocarpus Marsupium Targeting α-Amylase Enzyme. Biosciences Biotechnology Research Asia. 2023;20(1):147-62. doi: http://dx.doi.org/10.13005/bbra/3077

83. Mishra A, Srivastava R, Srivastava SP, et al. Antidiabetic activity of heart wood of Pterocarpus marsupium Roxb. and analysis of phytoconstituents. Indian J Exp Biol. 2013;51(5):363-374.

84. Sarup P, Bala S, Kamboj S. Pharmacology and phytochemistry of oleo-gum resin of Commiphora wightii (Guggulu). Scientifica. 2015;2015. https://doi.org/10.1155/2015/138039

85. Kunnumakkara AB, Banik K, Bordoloi D, et al. Googling the Guggul (Commiphora and Boswellia) for prevention of chronic diseases. Frontiers In Pharmacology. 2018;9:686. https://doi.org/10.3389/fphar.2018.00686

86. Bhardwaj M, Soni A, Mishra S, Tripathi S. Protective effect of Commiphora wightii in metabolic activity of streptozotocin (STZ) induced diabetes in rats. J Diabetes Endocrinol. 2014;5(3):19-28. https://doi.org/10.5897/JDE2014.0076

87. Wikipedia. Boerhavia diffusa. Available at: https://en.wikipedia.org/w/index.php?title=Boerhavia_diffusa&oldid=1132791115

88. Kaur H. Boerhaavia diffusa: bioactive compounds and pharmacological activities. Biomedical And Pharmacology Journal. 2019;12(4):1675-82. https://dx.doi.org/10.13005/bpj/1797

89. Govindasamy C, Al-Numair KS, Alsaif MA, Viswanathan KP. Influence of 3-hydroxymethyl xylitol, a novel antidiabetic compound isolated from Casearia esculenta (Roxb.) root, on glycoprotein components in streptozotocin-diabetic rats. Journal Of Asian Natural Products Research. 2011;13(8):700-6. https://doi.org/10.1080/10286020.2011.585157

90. Deokate UA, Khadabadi SS. Phytopharmacological aspects of Salacia chinensis. Journal Of Pharmacognosy And Phytotherapy. 2012;4(1):1-5. doi: http://dx.doi.org/10.5897/JPP11.006

91. Chandramohan G, Al‐Numair KS, Sridevi M, Pugalendi KV. Antihyperlipidemic activity of 3‐hydroxymethyl xylitol, a novel antidiabetic compound isolated from Casearia esculenta (Roxb.) root, in streptozotocin‐diabetic rats. Journal Of Biochemical And Molecular Toxicology. 2010;24(2):95-101. https://doi.org/10.1002/jbt.20317

92. Kshirsagar PR, Jagtap UB, Gaikwad NB, Bapat VA. Ethanopharmacology, phytochemistry and pharmacology of medicinally potent genus Swertia: An update. South African Journal Of Botany. 2019 Aug 1; 124:444-83. https://doi.org/10.1016/j.sajb.2019.05.030

93. Dhyani P, Giri L, Sharma E, Sati P. Swertia chirayita, an Endangered Anti-diabetic Plant: Trends in Biotechnological Interventions. Biotechnology Of Anti-Diabetic Medicinal Plants. 2021:133-51. doi : https://doi.org/10.1007/978-981-16-3529-8_6

94. Kaur P, Pandey DK, Dey A, et al. Swertia spp.: A potential source of high-value bioactive components, pharmacology, and analytical techniques. Bioactive Natural Products In Drug Discovery. 2020:165-213. https://doi.org/10.1007/978-981-15-1394-7_4

95. Sharma R, Amin H, Prajapati PK. Antidiabetic claims of Tinospora cordifolia (Willd.) Miers: critical appraisal and role in therapy. Asian Pacific Journal Of Tropical Biomedicine. 2015;5(1):68-78. https://doi.org/10.1016/S2221-1691(15)30173-8

96. Hekmatshoar Y, Özkan T, Saadat YR. Evidence for Health-Promoting Properties of Lepidium sativum L.: An Updated Comprehensive Review. Turkish Journal Of Pharmaceutical Sciences. 2022;19(6):714. https://doi.org/10.4274/tjps.galenos.2021.07504

97. Alqahtani FY, Aleanizy FS, Mahmoud AZ, et al. Chemical composition and antimicrobial, antioxidant, and anti-inflammatory activities of Lepidium sativum seed oil. Saudi Journal Of Biological Sciences. 2019;26(5):1089-92. https://doi.org/10.1016/j.sjbs.2018.05.007

98. Sharma P, Joshi T, Joshi T, et al. In silico screening of potential antidiabetic phytochemicals from Phyllanthus emblica against therapeutic targets of type 2 diabetes. Journal Of Ethnopharmacology. 2020;248:112268. https://doi.org/10.1016/j.jep.2019.112268

99. Saini R, Sharma N, Oladeji OS, et al. Traditional uses, bioactive composition, pharmacology, and toxicology of Phyllanthus emblica fruits: A comprehensive review. Journal Of Ethnopharmacology. 2022;282:114570. https://doi.org/10.1016/j.jep.2021.114570

100. Mohi-ud-din R, Mir RH, Wani TU, et al. Phytochemical and Pharmacological Properties of Picrorhiza Kurroa. InEdible Plants in Health and Diseases: Volume II: Phytochemical and Pharmacological Properties 2022 (pp. 399-423). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-16-4959-2_13

101. Sharma N. Picrorhiza kurroa. InHimalayan Medicinal Plants 2021 Jan 1 (pp. 67-83). Academic Press. https://doi.org/10.1016/B978-0-12-823151-7.00011-8

102. Mwangi RW, Macharia JM, Wagara IN, Bence RL. The medicinal properties of Cassia fistula L: A review. Biomedicine & Pharmacotherapy. 2021;144:112240. https://doi.org/10.1016/j.biopha.2021.112240

103. Salehi B, Ata A, V. Anil Kumar N, et al. Antidiabetic potential of medicinal plants and their active components. Biomolecules. 2019;9(10):551. https://doi.org/10.3390/biom9100551

104. Indu S, Vijayalakshmi P, Selvaraj J, Rajalakshmi M. Novel triterpenoids from Cassia fistula stem bark depreciates STZ-induced detrimental changes in IRS-1/Akt-mediated insulin signaling mechanisms in type-1 diabetic rats. Molecules. 2021;26(22):6812. https://doi.org/10.3390/molecules26226812

105. Krolikiewicz-Renimel I, Michel T, Destandau E, et al. Protective effect of a Butea monosperma (Lam.) Taub. flowers extract against skin inflammation: antioxidant, anti-inflammatory and matrix metalloproteinases inhibitory activities. Journal Of Ethnopharmacology. 2013;148(2):537-43. https://doi.org/10.1016/j.jep.2013.05.001

106. Somani R, Kasture S, Singhai AK. Antidiabetic potential of Butea monosperma in rats. Fitoterapia. 2006;77(2):86-90. https://doi.org/10.1016/j.fitote.2005.11.003

107. Chhatre S, Nesari T, Somani G, et al. Phytopharmacological overview of Tribulus terrestris. Pharmacognosy Reviews. 2014;8(15):45. https://doi.org/10.4103/0973-7847.125530

108. Khalid A, Nadeem T, Khan MA, et al. In vitro evaluation of immunomodulatory, anti-diabetic, and anti-cancer molecular mechanisms of Tribulus terrestris extracts. Scientific Reports. 2022;12(1):22478. https://doi.org/10.1038/s41598-022-26742-6

109. Sani A, Tajik A, Seiiedi SS, et al. A review of the anti-diabetic potential of saffron. Nutrition And Metabolic Insights. 2022;15:11786388221095223. https://doi.org/10.1177/11786388221095223

110. Yaribeygi H, Zare V, Butler AE, et al. Antidiabetic potential of saffron and its active constituents. Journal Of Cellular Physiology. 2019;234(6):8610-7. https://doi.org/10.1002/jcp.27843

111. Sattar NA, Hussain F, Iqbal T, Sheikh MA. Determination of in vitro antidiabetic effects of Zingiber officinale Roscoe. Brazilian Journal Of Pharmaceutical Sciences. 2012;48:601-7. https://doi.org/10.1590/S1984-82502012000400003

112. Otunola GA, Afolayan AJ. A review of the antidiabetic activities of ginger. Ginger cultivation and its antimicrobial and pharmacological potentials. 2019. https://doi.org/10.5772/intechopen.88899

113. Li Y, Tran VH, Duke CC, Roufogalis BD. Preventive and protective properties of Zingiber officinale (ginger) in diabetes mellitus, diabetic complications, and associated lipid and other metabolic disorders: a brief review. Evidence-Based Complementary And Alternative Medicine. 2012;2012. https://doi.org/10.1155/2012/516870

114. Durg S, Bavage S, Shivaram SB. Withania somnifera (Indian ginseng) in diabetes mellitus: a systematic review and meta‐analysis of scientific evidence from experimental research to clinical application. Phytotherapy Research. 2020;34(5):1041-59. https://doi.org/10.1002/ptr.6589

115. Gorelick J, Rosenberg R, Smotrich A, et al. Hypoglycemic activity of withanolides and elicitated Withania somnifera. Phytochemistry. 2015; 116:283-9. https://doi.org/10.1016/j.phytochem.2015.02.029

116. Tyagi R, Gupta V, Kumar R, Wander GS. Traditional Indian practices: Time to revisit and re-adopt for a healthier lifestyle, J Anaesthesiol Clin Pharmacol. 2020;36(Suppl 1):S166-S171. https://doi.org/10.4103/joacp.JOACP_299_20

117. Gherasim A, Arhire LI, Niță O, et al. The relationship between lifestyle components and dietary patterns. Proceedings of the Nutrition Society. 2020;79(3):311-323. https://doi.org/10.1017/S0029665120006898

118. Barani M, Sangiovanni E, Angarano M, et al. Phytosomes as innovative delivery systems for phytochemicals: A comprehensive review of literature. International journal of nanomedicine 2021;16:6983-7022. doi: https://doi.org/10.2147/IJN.S318416

119. Hu Y, Lin Q, Zhao H, et al. Bioaccessibility and bioavailability of phytochemicals: Influencing factors, improvements, and evaluations. Food Hydrocolloids. 2022;135(1):108165. https://doi.org/10.1016/j.foodhyd.2022.108165

120. Gunasekaran T, Haile T, Nigusse T, Dhanaraju MD. Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pacific journal of tropical biomedicine. 2014;4(Suppl 1):S1-S7. https://doi.org/10.12980/APJTB.4.2014C980

121. Allegra S, De Francia S, Turco F, et al. Phytotherapy and Drugs: Can Their Interactions Increase Side Effects in Cancer Patients? Journal of Xenobiotics. 2023;13(1):75-89. https://doi.org/10.3390/jox13010007

122. Jităreanu, A., Trifan, A., Vieriu, M., et al. Current trends in toxicity assessment of herbal medicines: A narrative review. Processes. 2023;11(1):83. https://doi.org/10.3390/pr11010083


Дополнительные файлы

1. Figure 1. Basic types and Causes of Diabetes mellitus.
Тема
Тип Исследовательские инструменты
Посмотреть (318KB)    
Метаданные ▾
2. Figure 2. Pathophysiology of Diabetes Mellitus
Тема
Тип Исследовательские инструменты
Посмотреть (267KB)    
Метаданные ▾

Рецензия

Для цитирования:


Kumar S., Kumar A., Tantray J., Shukla A. Этнофармакологические аспекты управления сахарным диабетом: исследование лекарственной флоры Шиваликского хребта Гималаев в Уттаракханде. Сахарный диабет. 2024;27(5):498-509. https://doi.org/10.14341/DM13080

For citation:


Kumar S., Kumar A., Tantray J., Shukla A. Ethnopharmacological Insights into Diabetes Management: Exploring Medicinal Flora of Shivalik range of Himalaya in Uttarakhand. Diabetes mellitus. 2024;27(5):498-509. https://doi.org/10.14341/DM13080

Просмотров: 1097


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)