Early intensification of therapy for type 2 diabetes mellitus and achievement of the target level of glycohemoglobin HbA1c are necessary factors to reduce the risk of micro- and macrovascular complications
https://doi.org/10.14341/DM13079
Abstract
Control of type 2 diabetes mellitus (T2DM) requires multifactorial behavioral and pharmacological treatment to prevent the development or slow the progression of complications. The main characteristics of T2DM — hyperglycemia and insulin resistance, combined with oxidative stress, low-level inflammation, epigenetic changes, genetic predisposition, activation of the renin-angiotensin-aldosterone system, causing endothelial dysfunction, are responsible for the metabolic environment that increases vascular risk in patients. Almost all patients with type 2 diabetes are at high and very high cardiovascular risk. The largest studies of the late XX-early XXI centuries. demonstrated a significant reduction in complications with intensive care early in the course of the disease and a «legacy effect» with the long-term historical value of HbA1c control during their observational follow-ups. The decrease in HbA1c may also play a role in mediating the positive effect on cardiovascular risk observed with the use of new hypoglycemic agents. The desire for glycemic control and the desire for organ-specific protection are not mutually exclusive, but complementary. Reassessing individual glycemic goals and achieving them at regular intervals with early intensification of therapy is key to overcoming clinical inertia.
About the Authors
M. S. ShamkhalovaRussian Federation
Minara S. Shamkhalova - MD, PhD.
11 Dm. Ulyanova street, 117036 Moscow
Competing Interests:
Шамхалова М.Ш. — участник экспертных советов компаний Мерк, АстраЗенека, Берингер Ингельхайм, Астеллас Фарма, Санофи, Ново Нордиск, Эли Лилли.
O. Y. Sukhareva
Russian Federation
Olga Y. Sukhareva - MD, PhD.
Moscow
Competing Interests:
Сухарева О.Ю. — участник экспертных советов компаний Мерк, АстраЗенека, Берингер Ингельхайм, Астеллас Фарма, Санофи, Ново Нордиск, Эли Лилли.
References
1. Schwartz SS, Epstein S, Corcey BE, et al. A Unified pathophysiological construct of diabetes and its complications. Trends Endocrinol Metab. 2017;28(9):645-655. doi: https://doi.org/10.1016/j.tem.2017.05.005
2. Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol. 2018;17(1):121. doi: https://doi.org/10.1186/s12933-018-0763-3
3. Bonora E, Trombetta M, Dauriz M, et al. Chronic complications in patients with newly diagnosed type 2 diabetes: prevalence and related metabolic and clinical features: the Verona Newly Diagnosed Type 2 Diabetes Study (VNDS). BMJ Open Diabetes Res Care. 2020;8(1):e001549. doi: https://doi.org/10.1136/bmjdrc-2020-001549
4. Honigberg M.С, Zekavat SM, Piruccello JP, et al. Cardiovascular and kidney outcomes across the glycemic spectrum: Insights from the UK Biobank. J Am Coll Cardiol. 2021;78(5):453-464. doi: https://doi.org/10.1016/j.jacc.2021.05.004
5. Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42(34):3227-3337. doi: https://doi.org/10.1093/eurheartj/ehab484
6. Nathan DM. Realising the long-term promise of insulin therapy: the DCCT/EDIC study. Diabetologia. 2021;64(5):1049-1058. doi: https://doi.org/10.1007/s00125-021-05397-4
7. Bebu I, Braffett BH, Orchard TJ, et al. Moderation of the effect of glycemia on the risk of cardiovascular disease in type 1 diabetes: The DCCT/EDIC study. Diabetes Res Clin Pract. 2021;171(5):108591. doi: https://doi.org/10.1016/j.diabres.2020.108591
8. Bebu I, Braffett BH, Orchard TJ, et al. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352(9131):854-865. doi: https://doi.org/10.1016/S0140-6736(98)07037-8
9. Bebu I, Braffett BH, Orchard TJ, et al. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837-853. doi: https://doi.org/10.1016/S0140-6736(98)07019-6
10. Chalmers J, Cooper ME. UKPDS and the legacy effect. N Engl J Med. 2008;359(15):1618-1620. doi: https://doi.org/10.1056/NEJMe0807625
11. EASD 2022, UK [Internet]. Clinical outcomes at 44 years: do the legacy effects persist? [cited 20.10.2022] Available from: https://www.easd.org/media-centre/#!resources/clinical-outcomes-at-44-yearsdo-the-legacy-effects-persist
12. Laiteerapong N, Ham SA, Gao Y, et al. The legacy effect in type 2 diabetes: Impact of early glycemic control on future complications (The Diabetes & Aging Study). Diabetes Care 2019;42(3):416-426. doi: https://doi.org/10.2337/dc17-1144
13. Hulman A, Bjerg L, Carstensen B. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545-2559. doi: https://doi.org/10.1056/NEJMoa0802743
14. Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129-139. doi: https://doi.org/10.1056/NEJMoa0808431
15. Duckworth W, Abraira C, Moritz T, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560-2572. doi: https://doi.org/10.1056/NEJMoa0802987
16. Zoungas S, Chalmers J, Neal B, et al. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N Engl J Med. 2014;371(15):1392-1406. doi: https://doi.org/10.1056/NEJMoa1407963
17. Wong MG, Perkovic V, Chalmers J, et al. Long-term benefits of intensive glucose control for preventing end-stage kidney disease: ADVANCE-ON. Diabetes Care. 2016;39(5):694-700. doi: https://doi.org/10.2337/dc15-2322
18. Turnbull FM, Abraira C, Anderson RJ, et al. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia. 2009;52(11):2288-2298. doi: https://doi.org/10.1007/s00125-009-1470-0
19. Giugliano D, Maiorino MI, Bellastella G, et al. Glycemic control, preexisting cardiovascular disease, and risk of major cardiovascular events in patients with type 2 diabetes mellitus: Systematic review with meta‐analysis of cardiovascular outcome trials and intensive glucose control trials. J Am Heart Assoc. 2019;8(12). doi: https://doi.org/10.1161/JAHA.119.012356
20. Fang M, Wang D, Coresh J, Selvin E. Trends in diabetes treatment and control in U.S. adults, 1999–2018. N Engl J Med. 2021;384(23):2219-2228. doi: https://doi.org/10.1056/NEJMsa2032271
21. International Diabetes Federation [Internet]. IDF Diabetes Atlas 10th ed [cited 19.08.2023]. Available from: https://diabetesatlas.org/
22. ElSayed NA, Aleppo G, Aroda VR, et al. 6. Glycemic Targets: Standards of Care in Diabetes — 2023. Diabetes Care. 2023;46(S1):S97-S110. doi: https://doi.org/10.2337/dc23-S006
23. National Institute of Health and Care Excellence. NICE guideline [NG28]. Last updated: 29 June 2022.
24. Davies MJ, Aroda VR, Collins BS, et al. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2022;65(12):1925-1966. doi: https://doi.org/10.1007/s00125-022-05787-2
25. Samson SL, Vellanki P, Blonde L, et al. American Association of Clinical Endocrinology Consensus Statement: Comprehensive Type 2 Diabetes Management Algorithm – 2023 Update. Endocr Pract. 2023;29(5):305-340. doi: https://doi.org/10.1016/j.eprac.2023.02.001
26. Cosentino F, Grant PJ, Aboyans V, Bailey CJ. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255-323. doi: https://doi.org/10.1093/eurheartj/ehz486
27. Dedov II, Shestakova MV, Majorov AJu, et al. Klinicheskie rekomendacii «Saharnyj diabet 2 tipa u vzroslyh». Moscow: Rossijskaja associacija jendokrinologov; 2022. (In Russ.).
28. ElSayed NA, Aleppo G, Aroda VR, et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care. 2023;46(S1):S19-S40. doi: https://doi.org/10.2337/dc23-S002
29. Khunti K, Wolden ML, Thorsted BL, et al. Clinical inertia in people with type 2 diabetes. Diabetes Care. 2013;36(11):3411-3417. doi: https://doi.org/10.2337/dc13-0331
30. Abdul-Ghani MA, Puckett C, Triplitt C, et al. Initial combination therapy with metformin, pioglitazone and exenatide is more effective than sequential add-on therapy in subjects with new-onset diabetes. Results from the Efficacy and Durability of Initial Combination Therapy for Type 2 Diabetes (EDICT): a randomized trial. Diabetes Obes Metab. 2015;17(3):268-275. doi: https://doi.org/10.1111/dom.12417
31. Matthews DR, Paldánius PM, Chiang YT, et al. VERIFY study group. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial. Lancet. 2019;394(10208):1519-1529. doi: https://doi.org/10.1016/S0140-6736(19)32131-2
32. Qian D, Zhang T, Tan X, et al. Comparison of antidiabetic drugs added to sulfonylurea monotherapy in patients with type 2 diabetes mellitus: A network meta-analysis. PLoS One. 2018;13(8):e0202563. doi: https://doi.org/10.1371/journal.pone.0202563
33. Vaccaro O, Masulli M, Nicolucci A, et al. Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with type 2 diabetes inadequately controlled with metformin (TOSCA.IT): a randomised, multicentre trial. Lancet Diabetes Endocrinol. 2017;5(11):887-897. doi: https://doi.org/10.1016/S2213-8587(17)30317-0
34. Rosenstock J, Kahn SE, Johansen OE, et al. Effect of linagliptin vs glimepiride on major adverse cardiovascular outcomes in patients with type 2 diabetes. JAMA. 2019;322(12):1155. doi: https://doi.org/10.1001/jama.2019.13772
35. Khunti K, Chatterjee S, Gerstein HC, et al. Do sulphonylureas still have a place in clinical practice? Lancet Diabetes Endocrinol. 2018;6(10):821-832. doi: https://doi.org/10.1016/S2213-8587(18)30025-1
36. Seino S, Takahashi H, Takahashi T, Shibasaki T. Treating diabetes today: a matter of selectivity of sulphonylureas. Diabetes, Obes Metab. 2012;14(10):9-13. doi: https://doi.org/10.1111/j.1463-1326.2011.01507.x
Supplementary files
|
1. Figure 1. Death from any cause and previous glycated hemoglobin (%) according to the UKPDS study [11]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(81KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Intensive glycemic control and microvascular outcomes (ADVANCE study) [17]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(345KB)
|
Indexing metadata ▾ |
|
3. Figure 3. Correlation between the magnitude of the decrease in the level of glycated hemoglobin and the risk of major adverse cardiovascular events (meta-regression analysis of 12 CVOTs) [19]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(106KB)
|
Indexing metadata ▾ |
|
4. Figure 4. International guidelines and recommendations for the treatment of type 2 diabetes mellitus (target levels of glycated hemoglobin) [21-26]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(165KB)
|
Indexing metadata ▾ |
|
5. Figure 5. Individualized choice of therapy goals based on glycated hemoglobin (Russian clinical guidelines 2022 "Type 2 diabetes mellitus in adults") - do not apply to pregnant women [27]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(317KB)
|
Indexing metadata ▾ |
Review
For citations:
Shamkhalova M.S., Sukhareva O.Y. Early intensification of therapy for type 2 diabetes mellitus and achievement of the target level of glycohemoglobin HbA1c are necessary factors to reduce the risk of micro- and macrovascular complications. Diabetes mellitus. 2023;26(4):343-351. (In Russ.) https://doi.org/10.14341/DM13079

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).