Metformin as an activator of AMP-activated protein kinase. Known and new mechanisms of action
https://doi.org/10.14341/DM13044
Abstract
Metformin, known in the medical community as the drug of first choice for type 2 diabetes mellitus, belongs to the group of biguanides and has proven to be an effective treatment in clinical practice. Our knowledge of the pharmacodynamic properties of metformin has long been limited to the following well-known mechanisms: a decrease in hyperglycemia due to an increase in peripheral insulin sensitivity, glucose utilization by cells, inhibition of hepatic gluconeogenesis, an increase in the capacity of all types of membrane glucose transporters, activation of fibrinolysis, and a decrease in the levels of atherogenic lipoproteins. Recent studies show that the range of positive pleiotropic effects of metformin is not limited to the above, and that the molecular mechanisms of its action are more complex than previously thought. This article presents a less known, but equally important action of metformin, in particular, its anti-oncogenic, antiviral, and anti-aging effects. In our study, we highlight that the activation of 5’-adenosine monophosphate-activated protein kinase (AMPK) should be considered as the primary mechanism of action through which almost all beneficial effects are achieved. In the light of recent scientific advances in metformin pharmacology, together with the pathogenetic uncertainty of the term «biguanide», it seems fair and reasonable to apply a more relevant definition to the drugn, namely «AMPK activator».
About the Authors
A. M. MkrtumyanRussian Federation
Ashot M. Mkrtumyan, MD, PhD, Professor
Moscow
T. N. Markova
Russian Federation
Tatyana N. Markova, MD, PhD, Professor
Moscow
M. A. Ovchinnikova
Russian Federation
Margarita A. Ovchinnikova, MD, clinical resident
20/1 Delegatskaya street, 127473 Moscow
I. A. Ivanova
Russian Federation
Irina A. Ivanova, clinical resident
Moscow
K. V. Kuzmenko
Russian Federation
Ksenia V. Kuzmenko, clinical resident
Moscow
References
1. Gosudarstvennyj reestr lekarstvennyh sredstv Ministerstva zdravoohranenija RF. Instrukcija po medicinskomu primeneniju lekarstvennogo preparata: Metformin, 2023. (In Russ.)]. URL: https://grls.rosminzdrav.ru/InstrImg/2023/03/27/1492167/d01f3b18-84c7-444c-bb64-83f117b4d1b1.pdf
2. Nagi DK, Yudkin JS. Effects of metformin on insulin resistance, risk factors for cardiovascular disease, and plasminogen activator inhibitor in NIDDM subjects. A study of two ethnic groups. Diabetes Care. 1993;16(4):621-629. doi: https://doi.org/10.2337/diacare.16.4.621
3. Evans JM, Donnelly LA, Emslie-Smith AM, et al. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005;330(7503):1304-1305. doi: https://doi.org/10.1136/bmj.38415.708634.F7
4. Varghese E, Samuel SM, Liskova A, et al. Diabetes and coronavirus (SARS-CoV-2): Molecular mechanism of Metformin intervention and the scientific basis of drug repurposing. PLoS Pathog. 2021;17(6):e1009634. doi: https://doi.org/10.1371/journal.ppat.1009634
5. Dudinskaya EN, Tkacheva ON, Brailova NV, et al. Telomere biology and metabolic disorders: the role of insulin resistance and type 2 diabetes. Problems of Endocrinology. 2020;66(4):35-44. (In Russ.). doi: https://doi.org/10.14341/probl12510
6. Song Y, Wu Z, Zhao P. The Function of Metformin in aging-related musculoskeletal disorders. Front Pharmacol. 2022;(13):865524. doi: https://doi.org/10.3389/fphar.2022.865524
7. Dziubak A, Wójcicka G, Wojtak A, Bełtowski J. Metabolic effects of Metformin in the failing Heart. Int J Mol Sci. 2018;19(10):2869. doi: https://doi.org/10.3390/ijms19102869
8. Sutter A, Landis D, Nugent K. The potential role for Metformin in the prevention and treatment of tuberculosis. J Thorac Dis. 2022;14(6):1758-1765. doi: https://doi.org/10.21037/jtd-22-39
9. Notaro ALG, Neto FTL. The use of metformin in women with polycystic ovary syndrome: an updated review. J Assist Reprod Genet. 2022;39(3):573-579. doi: https://doi.org/10.1007/s10815-022-02429-9
10. Casarella A, Nicotera R, Zicarelli MT, et al. Autosomic dominant polycystic kidney disease and metformin: Old knowledge and new insights on retarding progression of chronic kidney disease. Med Res Rev. 2022;42(1):629-640. doi: https://doi.org/10.1002/med.21850
11. Faubert B, Boily G, Izreig S, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 2013;17(1):113-124. doi: https://doi.org/10.1016/j.cmet.2012.12.001
12. Buzzai M, Jones RG, Amaravadi RK, et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53deficient tumor cell growth. Cancer Res. 2007;67(14):6745-6752. doi: https://doi.org/10.1158/0008-5472.CAN-06-4447
13. Clark CG, Mitchell PE. Diabetes mellitus and primary carcinoma of the pancreas. Br Med J. 1961;2(5262):1259-1262. doi: https://doi.org/10.1136/bmj.2.5262.1259
14. Giovannucci E, Harlan DM, Archer MC, et al. Diabetes and cancer: a consensus report. Diabetes Care. 2010;33(7):1674-1685. doi: https://doi.org/10.2337/dc10-0666
15. Chlebowski RT, McTiernan A, Wactawski-Wende J, et al. Diabetes, metformin, and breast cancer in postmenopausal women. J Clin Oncol. 2012;30(23):2844-2852. doi: https://doi.org/10.1200/JCO.2011.39.7505
16. Goodwin PJ, Chen BE, Gelmon KA, et al. Effect of Metformin vs Placebo on invasive disease-free survival in patients with breast cancer: The MA.32 randomized clinical trial. JAMA. 2022;327(20):1963-1973. doi: https://doi.org/10.1001/jama.2022.6147
17. Kim HJ, Kwon H, Lee JW, et al. Metformin increases survival in hormone receptor-positive, HER2-positive breast cancer patients with diabetes. Breast Cancer Res. 2015;17(1):64. doi: https://doi.org/10.1186/s13058-015-0574-3
18. Zhang ZJ, Zheng ZJ, Kan H, et al. Reduced risk of colorectal cancer with metformin therapy in patients with type 2 diabetes: a meta-analysis. Diabetes Care. 2011;34(10):2323-2328. doi: https://doi.org/10.2337/dc11-0512
19. Singh S, Singh PP, Singh AG, et al. Anti-diabetic medications and the risk of hepatocellular cancer: a systematic review and meta-analysis. Am J Gastroenterol. 2013;108(6):881-892. doi: https://doi.org/10.1038/ajg.2013.5
20. Ko EM, Walter P, Jackson A, et al. Metformin is associated with improved survival in endometrial cancer. Gynecol Oncol. 2014;132(2):438-442. doi: https://doi.org/10.1016/j.ygyno.2013.11.021
21. Scherbakov AM, Sorokin DV, Tatarskiy VV Jr, et al. The phenomenon of acquired resistance to metformin in breast cancer cells: The interaction of growth pathways and estrogen receptor signaling. IUBMB Life. 2016;68(4):281-292. doi: https://doi.org/10.1002/iub.1481
22. Berstein LM, Iyevleva AG, Vasilyev D, et al. Genetic polymorphisms potentially associated with response to metformin in postmenopausal diabetics suffering and not suffering with cancer. Cell Cycle. 2013;12(23):3681-3688. doi: https://doi.org/10.4161/cc.26868
23. Cejuela M, Martin-Castillo B, Menendez JA, Pernas S. Metformin and breast cancer: Where are we now? Int J Mol Sci. 2022;23(5):2705. doi: https://doi.org/10.3390/ijms23052705
24. Samuel SM, Varghese E, Varghese S, Büsselberg D. Challenges and perspectives in the treatment of diabetes associated breast cancer. Cancer Treat Rev. 2018;(70):98-111. doi: https://doi.org/10.1016/j.ctrv.2018.08.004
25. Gonzalez-Angulo AM, Meric-Bernstam F. Metformin: a therapeutic opportunity in breast cancer. Clin Cancer Res. 2010;16(6):1695-1700. doi: https://doi.org/10.1158/1078-0432.CCR-09-1805
26. Zou Z, Tao T, Li H, Zhu X. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell Biosci. 2020;10(1):31. doi: https://doi.org/10.1186/s13578-020-00396-1
27. Bost F, Decoux-Poullot AG, Tanti JF, Clavel S. Energy disruptors: rising stars in anticancer therapy? Oncogenesis. 2016;5(1):e188. doi: https://doi.org/10.1038/oncsis.2015.46
28. Chomanicova N, Gazova A, Adamickova A, et al. The role of AMPK/mTOR signaling pathway in anticancer activity of metformin. Physiol Res. 2021;70(4):501-508. doi: https://doi.org/10.33549/physiolres.934618
29. Buzzai M, Jones RG, Amaravadi RK, et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53deficient tumor cell growth. Cancer Res. 2007;67(14):6745-6752. doi: https://doi.org/10.1158/0008-5472.CAN-06-4447
30. Faubert B, Boily G, Izreig S, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 2013;17(1):113-124. doi: https://doi.org/10.1016/j.cmet.2012.12.001
31. Wheaton WW, Weinberg SE, Hamanaka RB, et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife. 2014;(3):e02242. doi: https://doi.org/10.7554/eLife.02242
32. Kulikov VA, Beljaeva LE. Metabolizm rakovoj kletki kak terapevticheskaja mishen’. Vestnik Vitebskogo gosudarstvennogo medicinskogo universiteta. 2016;15(6):7-20. (In Russ.).
33. Hardie DG. AMPK: a target for drugs and natural products with effects on both diabetes and cancer. Diabetes. 2013;62(7):2164-2172. doi: https://doi.org/10.2337/db13-0368
34. Zheng Z, Bian Y, Zhang Y, et al. Metformin activates AMPK/SIRT1/NF-κB pathway and induces mitochondrial dysfunction to drive caspase3/GSDME-mediated cancer cell pyroptosis. Cell Cycle. 2020;19(10):1089-1104. doi: https://doi.org/10.1080/15384101.2020.1743911
35. Triggle CR, Mohammed I, Bshesh K, et al. Metformin: Is it a drug for all reasons and diseases? Metabolism. 2022;(133):155223. doi: https://doi.org/10.1016/j.metabol.2022.155223
36. Garcia EY. Flumamine, a new synthetic analgesic and anti-flu drug. J Philipp Med Assoc. 1950;26(7):287-293.
37. Xun YH, Zhang YJ, Pan QC, et al. Metformin inhibits hepatitis B virus protein production and replication in human hepatoma cells. J Viral Hepat. 2014;21(8):597-603. doi: https://doi.org/10.1111/jvh.12187
38. del Campo JA, López RA, Romero-Gómez M. Insulin resistance and response to antiviral therapy in chronic hepatitis C: mechanisms and management. Dig Dis. 2010;28(1):285-293. doi: https://doi.org/10.1159/000282104
39. Yu JW, Sun LJ, Zhao YH, et al. The effect of metformin on the efficacy of antiviral therapy in patients with genotype 1 chronic hepatitis C and insulin resistance. Int J Infect Dis. 2012;16(6):e436-e441. doi: https://doi.org/10.1016/j.ijid.2012.02.004
40. Zhou SN, Zhang N, Liu HH, et al. Skewed CD39/CD73/adenosine pathway contributes to B-cell hyperactivation and disease progression in patients with chronic hepatitis B. Gastroenterol Rep (Oxf ). 2020;9(1):49-58. doi: https://doi.org/10.1093/gastro/goaa048
41. Sheth SH, Larson RJ. The efficacy and safety of insulin-sensitizing drugs in HIV-associated lipodystrophy syndrome: a metaanalysis of randomized trials. BMC Infect Dis. 2010;10(1):183. doi: https://doi.org/10.1186/1471-2334-10-183
42. Kapoor Y, Sharma R, Kumar A. Repurposing of Existing Drugs for the Bacterial Infections: An In silico and In vitro Study. Infect Disord Drug Targets. 2020;20(2):182-197. doi: https://doi.org/10.2174/1871526519666181126094244
43. Espinosa OA, Zanetti ADS, Antunes EF, et al. Prevalence of comorbidities in patients and mortality cases affected by SARS-CoV2: a systematic review and meta-analysis. Rev Inst Med Trop Sao Paulo. 2020;(62):e43. doi: https://doi.org/10.1590/s1678-9946202062043
44. Dedov II, Mokrysheva NG, Shestakova MV, et al. Glycemia control and choice of antihyperglycemic therapy in patients with type 2 diabetes mellitus and COVID-19: a consensus decision of the board of experts of the Russian association of endocrinologists. Diabetes mellitus. 2022;25(1):27-49. (In Russ.). doi: https://doi.org/10.14341/DM12873
45. Han T, Ma S, Sun C, et al. Association between antidiabetic agents and clinical outcomes of COVID-19 in patients with diabetes: A systematic review and meta-analysis. Arch Med Res. 2022;53(2):186-195. doi: https://doi.org/10.1016/j.arcmed.2021.08.002
46. Bramante CT, Buse J, Tamaritz L, et al. Outpatient metformin use is associated with reduced severity of COVID-19 disease in adults with overweight or obesity. J Med Virol. 2021;93(7):4273-4279. doi: https://doi.org/10.1002/jmv.26873
47. Bramante CT, Huling JD, Tignanelli CJ, et al. Randomized trial of Metformin, Ivermectin, and Fluvoxamine for Covid-19. N Engl J Med. 2022;387(7):599-610. doi: https://doi.org/10.1056/NEJMoa2201662
48. Shestakova MV, Vikulova OK, Isakov MА, Dedov II. Diabetes and COVID-19: analysis of the clinical outcomes according to the data of the russian diabetes registry. Problems of Endocrinology. 2020;66(1):35-46. (In Russ.). doi: https://doi.org/10.14341/probl12458
49. Markova TN, Ponomareva AA, Samsonova IV, et al. Risk factors for death in patients with type 2 diabetes mellitus and novel coronavirus infection. Endocrinology: news, opinions, training. 2022;11(1):8-16. (In Russ.). doi: https://doi.org/10.33029/2304-9529-2022-11-1-8-16
50. Kan C, Zhang Y, Han F, et al. Mortality risk of antidiabetic agents for type 2 diabetes with COVID-19: A systematic review and meta-analysis. Front Endocrinol (Lausanne). 2021;(12):708494. doi: https://doi.org/10.3389/fendo.2021.708494
51. Lukito AA, Pranata R, Henrina J, et al. The effect of Metformin consumption on mortality in hospitalized COVID-19 patients: a systematic review and meta-analysis. Diabetes Metab Syndr. 2020;14(6):2177-2183. doi: https://doi.org/10.1016/j.dsx.2020.11.006
52. Kow CS, Hasan SS. Mortality risk with preadmission metformin use in patients with COVID-19 and diabetes: A meta-analysis. J Med Virol. 2021;93(2):695-697. doi: https://doi.org/10.1002/jmv.26498
53. Li Y, Yang X, Yan P, et al.. Metformin in patients with COVID-19: A systematic review and meta-analysis. Front Med. 2021;(8). doi: https://doi.org/10.3389/fmed.2021.704666
54. Yang W, Sun X, Zhang J, Zhang K. The effect of metformin on mortality and severity in COVID-19 patients with diabetes mellitus. Diabetes Res Clin Pract. 2021;(178):108977. doi: https://doi.org/10.1016/j.diabres.2021.108977
55. Tanner JE, Alfi i C. The Fatty Acid Lipid Metabolism Nexus in COVID-19. Viruses. 2021;13(1):90. doi: https://doi.org/10.3390/v13010090
56. Farfan-Morales CN, Cordero-Rivera CD, Osuna-Ramos JF, et al. The antiviral effect of metformin on zika and dengue virus infection. Sci Rep. 2021;11(1):8743. doi: https://doi.org/10.1038/s41598-021-87707-9
57. Xie W, Wang L, Dai Q, et al. Activation of AMPK restricts coxsackievirus B3 replication by inhibiting lipid accumulation. J Mol Cell Cardiol. 2015;(85):155-167. doi: https://doi.org/10.1016/j.yjmcc.2015.05.021
58. Kifle ZD, Woldeyohanis AE, Demeke CA. A review on protective roles and potential mechanisms of metformin in diabetic patients diagnosed with COVID-19. Metab Open. 2021;(12):100137. doi: https://doi.org/10.1016/j.metop.2021.100137
59. Romero-Gómez M, Del Mar Viloria M, Andrade RJ, et al. Insulin resistance impairs sustained response rate to peginterferon plus ribavirin in chronic hepatitis C patients. Gastroenterology. 2005;128(3):636-641. doi: https://doi.org/10.1053/j.gastro.2004.12.049
60. Brima W, Eden DJ, Mehdi SF, et al. The brighter (and evolutionarily older) face of the metabolic syndrome: evidence from Trypanosoma cruzi infection in CD-1 mice. Diabetes Metab Res Rev. 2015;31(4):346-359. doi: https://doi.org/10.1002/dmrr.2636
61. World Health Organization [Internet] (In Russ.). URL: https://www.who.int/ru
62. Cabreiro F, Au C, Leung KY, et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell. 2013;153(1):228-239. doi: https://doi.org/10.1016/j.cell.2013.02.035
63. De Haes W, Frooninckx L, Van Assche R, et al. Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2. Proc Natl Acad Sci U S A. 2014;111(24):E2501-E2509. doi: https://doi.org/10.1073/pnas.1321776111
64. Karnewar S, Neeli PK, Panuganti D, et al. Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: Relevance in age-associated vascular dysfunction. Biochim Biophys Acta Mol Basis Dis. 2018;1864(4 Pt A):1115-1128. doi: https://doi.org/10.1016/j.bbadis.2018.01.018
65. Slack C, Foley A, Partridge L. Activation of AMPK by the putative dietary restriction mimetic metformin is insufficient to extend lifespan in Drosophila. PLoS One. 2012;7(10):e47699. doi: https://doi.org/10.1371/journal.pone.0047699
66. Martin-Montalvo A, Mercken EM, Mitchell SJ, et al. Metformin improves healthspan and lifespan in mice. Nat Commun. 2013;4(1):2192. doi: https://doi.org/10.1038/ncomms3192
67. Novelle MG, Ali A, Diéguez C, Bernier M, de Cabo R. Metformin: A Hopeful Promise in Aging Research. Cold Spring Harb Perspect Med. 2016;6(3):a025932. doi: https://doi.org/10.1101/cshperspect.a025932
68. Hsu SK, Cheng KC, Mgbeahuruike MO, et al. New insight into the effects of metformin on diabetic retinopathy, aging and cancer: Nonapoptotic cell death, immunosuppression, and effects beyond the AMPK pathway. Int J Mol Sci. 2021;22(17):9453. doi: https://doi.org/10.3390/ijms22179453
69. Turner R. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34) [published correction appears in Lancet 1998;352(9139):1558]. Lancet. 1998;352(9131):854-865. doi: https://doi.org/10.1016/S0140-6736(98)07037-8
70. Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577-1589. doi: https://doi.org/10.1056/NEJMoa0806470
71. Bannister CA, Holden SE, Jenkins-Jones S, et al. Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes Metab. 2014;16(11):1165-1173. doi: https://doi.org/10.1111/dom.12354
72. Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA. Metformin as a tool to target aging. Cell Metab. 2016;23(6):1060-1065. doi: https://doi.org/10.1016/j.cmet.2016.05.011
Supplementary files
|
1. Figure 1. Antitumor effects of metformin. Adapted from [23]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(307KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Intracellular pathways of the antitumor action of metformin. Adapted from [23]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(328KB)
|
Indexing metadata ▾ |
|
3. Figure 3. Antiviral effect of metformin. Adapted from [4]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(346KB)
|
Indexing metadata ▾ |
|
4. Figure 4. Intracellular mechanisms of the antiaging action of metformin. Adapted from [68]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(259KB)
|
Indexing metadata ▾ |
Review
For citations:
Mkrtumyan A.M., Markova T.N., Ovchinnikova M.A., Ivanova I.A., Kuzmenko K.V. Metformin as an activator of AMP-activated protein kinase. Known and new mechanisms of action. Diabetes mellitus. 2023;26(6):585-595. (In Russ.) https://doi.org/10.14341/DM13044

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).