The role of individual organization of circadian rhythms in the formation of carbohydrate metabolism disorders
https://doi.org/10.14341/DM12909
Abstract
BACKGROUND: In medical literature sources, there are data on the relationship of disorders of circadian rhythms (desynchronosis) with the development of type 2 diabetes mellitus (T2DM). Desynchronosis of circadian rhythms of glycemia can be triggered both by external factors (exposure to excessive artificial lighting in the evening, violation of the diet, «sleep-wake»), and internal — from the individual organization of circadian rhythms (chronotype). In this connection, there is an interest in the most detailed study of the influence of individual characteristics of the organization of circadian rhythms on the risk of developing T2DM. AIM: To characterize the individual organization of circadian rhythms in persons without carbohydrate metabolism disorders, with prediabetes and T2DM with obesity and BMI = 30.0–34.9 kg/m2.
MATERIALS AND METHODS: Тhe Horn-Ostberg questionnaires were analyzed retrospectively in individuals with visceral obesity without carbohydrate metabolism disorders (n=40), with prediabetes (n=40) and T2DM (n=40). The results of the Horn-Ostberg test were compared with anamnestic anthropometric, laboratory parameters, nutrition diaries, daily rhythms of integral physiological indicators of carbohydrate and energy metabolism.
RESULTS: All study participants (n=120) were identical age 56,7 [52,2; 58,6] years, BMI 31.3 [30.7; 33.9] kg/m2, waist circumference (OW) in women 96.54 ± 1.35 cm in men 98.75 ± 2.61 cm Sex distribution: 73% women and 27% men. Persons with morning chronotype made up 24% (29 people), intermediate 63% (75 people) and evening 13% (16 people) . In the groups, the late time for the first breakfast was noted (without carbohydrate metabolism disorders 9:45h, prediabetes 9:31 and T2DM 10:00h), and 20% of the participants missed it (p<0.05). A larger amount of daily energy value was shifted to the afternoon (p<0.05). Late bedtime was observed in all groups: without carbohydrate metabolism disorders 22.50–00.29h, with prediabetes 22.30–00.29h and T2DM 22.45–00.29h with an increase in sleep duration in the prediabetes group (08.14h, 09.00h and 08.38h, respectively). In all groups, morning and evening chronotypes had correlations with the amplitude of the daily rhythm of glycemia (r=-0.7, p=0.002 and r=-0.6, p=0.035), basal body temperature (r=0.4, p=0.046 and r=-0.5, p<0.0001) and daily energy value (r=-0.6, p= 0.041 and r=-0.6, p=0.05), differing only in the strength of the relationship.
CONCLUSION: Thus, people with the morning and intermediate types of the morning chronotype, who organize a daily routine and nutrition that do not correspond to the individual characteristics of this given chronotype, can, along with people of the evening chronotype, become vulnerable in the context of the development of type 2 diabetes.
About the Authors
Yu. V. NelaevaRussian Federation
Yulia V. Nelaeva - MD, PhD; Scopus Author ID: 660841.
Tyumen
Competing Interests:
none
O. D. Rymar
Russian Federation
Oksana D. Rymar - MD, PhD; Researcher ID: P-9647-2017; Scopus Author ID: 24339174300.
Novosibirsk
Competing Interests:
none
I. M. Petrov
Russian Federation
Ivan M. Petrov - MD, PhD; Scopus Author ID: 7101601614; Researcher ID: D-7613-2015.
Tyumen
Competing Interests:
none
A. A. Nelaeva
Russian Federation
Alsu A. Nelaeva - MD, PhD, Professor; Scopus Author ID: 726697.
Tyumen
Competing Interests:
none
A. E. Yuzhakova
Russian Federation
Anna E. Yuzhakova - MD.
117 Melnikaite street, 625000 Tyumen
Competing Interests:
none
References
1. Anisimov VN. Rol cirkadiannih ritmov i chasovih genov v starenii i razvitii associirovannoi s vozrastom patologii. Ed. by Anisimov VN, Gubareva EA, Panchenko AV. In Hronobiologiya i hronomedicina. Moscow: RUDN; 2018. P. 207-219. (In Russ.).
2. Montaruli A, Castelli L, Mulè A, et al. Biological rhythm and chronotype: New perspectives in health. Biomolecules. 2021;11(4):487. doi: https://doi.org/10.3390/biom11040487
3. Hronobiologiya i hronomedicina: monografiya Ed. by Chibisov SM, Rapoport SI, Blagonravova ML. Moscow: RUDN; 2018. 828 p. (In Russ.).
4. Komarov FI. Faktori vneshnei sredi kak vozmojnaya prichina desinhronoza. Ed. by Komarov FI, Rapoport SI, Breus TK, Chibisov SM. In Hronobiologiya i hronomedicina. Moscow: RUDN; 2018. 80 h. (In Russ.).
5. Lane JM, Vlasac I, Anderson SG, et al. Genome-wide association analysis identifies novel loci for chronotype in 100,420 individuals from the UK Biobank. Nat Commun. 2016;7(1):10889. doi: https://doi.org/10.1038/ncomms10889
6. Levandovski R, Sasso E, Hidalgo MP. Chronotype: a review of the advances, limits and applicability of the main instruments used in the literature to assess human phenotype. Trends Psychiatry Psychother. 2013;35(1):3-11. doi: https://doi.org/10.1590/S2237-60892013000100002
7. Tsvetkova ES, Romantsova TI, Poluektov MG, et al. The importance of melatonin in the regulation of metabolism, eating behavior, sleep, and the prospects for the use of melatonin drugs for obesity treatment. Obesity and metabolism. 2021;18(2):112-124. (In Russ.). doi: https://doi.org/10.14341/omet12279
8. Glutkin SV, Chernisheva YuN, Zinchuk VV, et al. Fiziologicheskaya harakteristika lic s razlichnimi hronotipami. Vestnik Smolenskoi gosudarstvennoi medicinskoi akademii. 2017;16(2):48-58. (In Russ.).
9. Strueva NV, Melnichenko GA, Poluektov MG, et al. Sleep in obese patients. Obesity and metabolism. 2014;11(3):23-30. (In Russ.). doi: https://doi.org/10.14341/omet2014323-30
10. Yuzhakova AE, Nelaeva AA, Nelaeva YuV, Gubin DG. Using amplitude-phase parameters of circadian rhythms as diagnostic markers of carbohydrate metabolism disorders. Obesity and metabolism. 2022;19(1):83-91. (In Russ.). doi: https://doi.org/10.14341/omet12781
11. Yujakova AE, Nelaeva AA, Hasanova YuV, Medvedeva I.V. Risk factors for carbohydrate metabolism disorders from a chronobiological position. Voprosi pitaniya. 2020;89(6):23-30. (In Russ.). doi: https://doi.org/10.24411/0042-8833-2020-10075
12. Vremya — dengi. Ed. by Horn D, Ostberg O. Moscow: Eksmo; 2004. 352 p. (In Russ.).
13. Gubin DG. Chronodiagnostics and chronotherapy — frontiers for personalized clinical medicine. Tyumen Med J. 2019;21(1):20-40. (In Russ.)]. doi: https://doi.org/10.36361/2307-4698-2019-21-1-20-40
14. Knutson KL, Wu D, Patel SR, et al. Association between sleep timing, obesity, diabetes: The Hispanic Community Health Study/ Study of Latinos (HCHS/SOL) cohort study. Sleep. 2017;40(4):15-24. doi: https://doi.org/10.1093/sleep/zsx014
15. Prohorova EM. Biologicheskie ritmi i zdorove. Servis plus. 2010;(3):20-26. (In Russ.).
16. «Sovi» «javoronki» i drugie lyudi. O vliyanii nashih vnutrennih chasov na zdorove i harakter. Ed. by Putilov A.A. Novosibirsk: Sibirskoe universitetskoe izdatelstvo; 2003. 608 p. (In Russ.).
17. Kalmbach DA, Schneider LD, Cheung J, et al. Genetic basis of chronotype in humans: insights from three landmark GWAS. Sleep. 2017;40(2):20-40. doi: https://doi.org/10.1093/sleep/zsw048
18. McHill AW, Wright KP. Role of sleep and circadian disruption on energy expenditure and in metabolic predisposition to human obesity and metabolic disease. Obes Rev. 2017;18(2):15-24. doi: https://doi.org/10.1111/obr.12503
19. Rocha LS da, de Matos RJB, de Souza JA, et al. Daytime increase in caloric intake without change in total 24-h caloric intake can increase adiposity but not total bodyweight in rats with inverted feeding pattern. Appl Physiol Nutr Metab. 2017;42(9):931-940. doi: https://doi.org/10.1139/apnm-2016-0536
20. Yujakova AE, Nelaeva AA, Hasanova YuV. Rol jirovoi tkani v podderjanii gomeostaza uglevodnogo obmena. Effektivnaya farmakoterapiya. 2019;1(5):12-16. (In Russ.).
21. Smirnova OM. Effektivnost sna kak determinanta chuvstvitelnosti k insulinu / Sbornik tezisov IV (XXVII) Nacionalnogo kongressa endokrinologov «Innovacionnie tehnologii v endokrinologii». Moscow; 2021. P. 118. (In Russ.).
22. Bioritmi gormonov. Monografiya dlya vrachei. Ed. by Dedov II, Dedov IV. Moscow: Izd-vo Medicina; 1992. (In Russ.).
23. Misnikova IV, Kovaleva YuA. Son i narusheniya metabolizma. RMJ. 2017;22:1641-1645. (In Russ.).
24. Zimmet P, Alberti KGMM, Stern N, et al. The circadian syndrome: is the metabolic syndrome and much more! J Intern Med. 2019;286(2):181-191. doi: https://doi.org/10.1111/joim.12924
25. Morris CJ, Yang JN, Garcia JI, et al. Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. Proc Natl Acad Sci. 2015;112(17):181-191. doi: https://doi.org/10.1073/pnas.1418955112
26. Valova AYa, Setko NP, Bulicheva EV, Setko IM. Osobennosti rejima dnya sovremennih gimnazistov nachalnoi shkoli i pri perehode k predmetnomu obucheniyu. Orenburgskii medicinskii vestnik. 2017;(2(18)):63-67. (In Russ.).
27. Drakina SA, Perevoschikova NK. Znachimost biologicheskih ritmov v postroenii rejima dnya. Mat’ i Ditja v Kuzbasse. 2021;2(85):12-19. (In Russ.)]. doi: https://doi.org/10.24411/2686-7338-2021-10017
Supplementary files
|
1. Figure 1. The proportion of people with morning, intermediate and evening types who associate themselves and their rhythm of life with this chronotype. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(96KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Time intervals of the best well-being of study participants with different chronotypes. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(127KB)
|
Indexing metadata ▾ |
|
3. Figure 3. Time intervals of the best performance in study participants with different chronotypes. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(123KB)
|
Indexing metadata ▾ |
|
4. Figure 4. Actual awakening time of study participants depending on chronotype. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(98KB)
|
Indexing metadata ▾ |
|
5. Figure 5. Actual meal times in study groups. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(86KB)
|
Indexing metadata ▾ |
|
6. Figure 6. Distribution of daily energy value among main meals. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(88KB)
|
Indexing metadata ▾ |
|
7. Figure 7. Actual bedtime of study participants by chronotype. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(103KB)
|
Indexing metadata ▾ |
|
8. Figure 8. The relationship between the number of points according to the Horn-Ostberg questionnaire and basal body temperature in groups (n=120). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(152KB)
|
Indexing metadata ▾ |
|
9. Figure 9. The relationship between leptin and MESOR of the circadian rhythm of glycemia in individuals with the evening chronotype (n=16). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(99KB)
|
Indexing metadata ▾ |
|
10. Figure 10. The relationship between leptin and the amplitude of the daily rhythm of glycemia in individuals with an intermediate chronotype (n=75). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(111KB)
|
Indexing metadata ▾ |
|
11. Figure 11. Relationship between basal body temperature and acrophase of the circadian glycemic rhythm in individuals with morning and evening chronotypes (n=45). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(127KB)
|
Indexing metadata ▾ |
|
12. Figure 12. Relationship between daily energy value and acrophase of the circadian glycemic rhythm in individuals with morning and evening chronotypes (n=45). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(138KB)
|
Indexing metadata ▾ |
Review
For citations:
Nelaeva Yu.V., Rymar O.D., Petrov I.M., Nelaeva A.A., Yuzhakova A.E. The role of individual organization of circadian rhythms in the formation of carbohydrate metabolism disorders. Diabetes mellitus. 2023;26(3):224-235. (In Russ.) https://doi.org/10.14341/DM12909

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).