Preview

Diabetes mellitus

Advanced search

The clinical aspects ot the sulphonylurea compounds from the position of the cardioprotective approach at patient with type 2 diabetes, using glucocardiomonitoring

https://doi.org/10.14341/DM12902

Abstract

BACKGRAUND: Now the trend of Type 2 Diabetes Mellitus (T2DM) management from glucocentric to cardioprotective approach take place, and it especially relevant for the multiple group of patients with T2DM using Sulphonylurea (SU). Meanwhile the synchronized glucocardiomonitoring allowed to providing the accurate information about the cardiometabolic status of patients with T2DM.

AIMS: Using the professional glucocardiomonitoring for T2DM-SU patients to investigate the relation between the glycemic variability, integral glycemic parameters and proarrhythmogenic cardiovascular events and the long-term cardiovascular outcomes.

MATERIALS AND METHODS: In the observational (randomised for inclusion of patients) controlled trial the SU-patients with the T2DM duration 9,8±6,6 years were included, whom the professional glucocardiomonitoring had been made during 5 days and then the fatal and non-fatal cardiovascular events had been investigated during 5 years.

 RESULTS: From 283 patients with T2DM 154 patients (the basic group) used gliclazide (original drug Diabeton MB), 129 patients (the control group) used glibenclamide. The relation between the rising of the glycemic variability and cardiovascular events (the prolongation QT interval, the ST depression (dST), ventricular arrhythmias (VAs)) were demonstrated. At the basic and the control groups the coefficient of variation (CV) was 23,0±8,1 and 30,1±10,7% respectively (p<0,001), TIR-HYPO — 0,8±2,4 and 3,5±5,4% (p<0,001), the number of glycemia differences > 4 mmol/L/hr — 2,3±3,6 and 3,5±4,3 (p=0,010), the minimal glycemia level — 4,6±1,0 and 3,9±1,4 mmol/L (p=0,001). The followed differences of cardiovascular parameters were determined: QTc — 412±24 and 423±28 ms (p=0,001), dST — 0,052 [0; 0,275] and 0,109 [0; 0,422] (ratio, p=0,012), VAs — 2,2 [0; 5,9] and 3,5 [0; 8,3] (cases/pts, p=0,008). The long-term cardiovascular outcomes from the gliclazide and glibenclamide therapy (cases/100 pts-years): the total and cardiovascular death — 0,12 [0; 1,74] and 0,76 [0; 4,62] (p=0,062), cardiovascular death -0,12 [0; 1,74] and 0,62 [0; 4,08] (p=0,122), myocardial infarction — 1,56 [0; 6,94] and 2,00 [0; 8,02] (p=0,193), stroke — 0,78 [0; 4,66] and 0,76 [0; 4,62] (p=0,169), chronic heart failure — 0,52 [0; 3,72] and 1,24 [0; 6,06] (p=0,095), MACE — 2,46 [0; 10,1] и 2,62 [0; 9,38] (p=0,095), severe hypoglycemia at home — 2,46 [0; 9,12] и 7,24 [0; 16,68] (p<0,001).

CONCLUSIONS: It was demonstrated that the gliclazide (original drug Diabeton MB) administration is characterized with the better quality of glycemia control, the lower glycemic variability, the lower frequency of the SU-associated hypoglycemia, dST, VAs, the lower prolongation QTc interval. The implementation of the synchronized glucocardiomonitoring is necessary for minimization of the cardiovascular T2DM-complications and for the choice of the personalized 

About the Authors

N. A. Chernikova
Russian Medical Academy of Continuous Professional Education
Russian Federation

Natalia A. Chernikova, MD, PhD, associate professor

20, Chasovaya Street, 125315 Moscow

eLibrary SPIN: 5043-5759



L. L. Kamynina
Russian Medical Academy of Continuous Professional Education
Russian Federation

Liudmila L. Kamynina, MD, PhD

Moscow

eLibrary SPIN: 4567-9989



A. S. Аmetov
Russian Medical Academy of Continuous Professional Education
Russian Federation

Alexander S. Ametov, MD, PhD, Professor

Moscow

eLibrary SPIN: 9511-1413



D. A. Sychov
Russian Medical Academy of Continuous Professional Education
Russian Federation

Dmitry A. Sychov, MD, PhD, Professor

Moscow

eLibrary SPIN: 4525-7556



References

1. Mirzaev KB, Fedorinov DS, Ivashchenko DV, Sychev DA. Multi-Ethnic Analysis of Cardiac Pharmacogenetic Markers of Cytochrome P450 and Membrane Transporters Genes in the Russian Population. Rational Pharmacotherapy in Cardiology. 2019; 15(3):393-406. (In Russ.) doi: https://doi.org/10.20996/1819-6446-2019-15-3-393-406

2. Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes Management Algorithm — 2019 Executive Summary. Endocr Pract. 2019; 25(1):69-100. doi: https://doi.org/10.4158/CS-2018-0535

3. Davies MJ, D’Alessio DA, Fradkin J, et al. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018; 41(12):2669-2701. doi: https://doi.org/10.2337/dci18-0033.

4. Dedov II, Shestakova MV, Mayorov AYu, et al. Standards of specialized diabetes care. Diabetes Mellitus. 2019; 22(S1):1-144 (In Russ.). doi: https://doi.org/10.14341/DM221S1

5. Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020; 41(2):255-323. doi: https://doi.org/10.1093/eurheartj/ehz486

6. Ametov AS, Parnes EYa, Сhernikova NA, Ermakova EA. Cardiovascular risks in diabetes. Endokrinologiia: novosti, mneniia, obuchenie. 2013; 2:38-43. (In Russ.).

7. Ametov AS, Kamynina LL, Nazchmudinova PK. Clinical aspects of Use of Continuous Glucose Monitoring in Diabetology. RMJ. 2013; 21(28):1401-1404. (In Russ.).

8. Chernikova NA, Kamynina LL, Ametov AS. The modern paradigm for assessment of the integral parameters аnd the glycemic variability - the role for the type 2 diabetes mellitus management. Med Counc. 2019; 4:38-43. (In Russ.). doi: https://doi.org/10.21518/2079-701X-2019-4-38-43

9. Danne T, Nimri R, Battelino T, et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care. 2017; 40(12):1631-1640. doi: https://doi.org/10.2337/dc17-1600

10. Battelino T, Danne T, Bergenstal RM, et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care. 2019; 42(8):1593-1603. doi: https://doi.org/10.2337/dci19-0028

11. Trubitsyna NP, Shestakova MV. Review of the results of the EASYDia international observational study. The effect of dose titration of Diabeton MV on the effectiveness of treatment of type 2 diabetes. Diabetes Mellitus. 2019; 22(2):159-164. (In Russ). doi: https://doi.org/10.14341/DM10185

12. Maloney A, Rosenstock J, Fonseca V. A Model-Based Meta-Analysis of 24 Antihyperglycemic Drugs for Type 2 Diabetes: Comparison of Treatment Effects at Therapeutic Doses. Clin Pharmacol Ther. 2019; 105(5):1213-1223. doi: https://doi.org/10.1002/cpt.1307

13. Silbert R, Salcido-Montenegro A, Rodriguez-Gutierrez R, et al. Hypoglycemia Among Patients with Type 2 Diabetes: Epidemiology, Risk Factors, and Prevention Strategies. Curr Diab Rep. 2018; 18(8):53. doi: https://doi.org/10.1007/s11892-018-1018-0

14. Rahmi Garcia RM, Rezende PC, Hueb W. Impact of hypoglycemic agents on myocardial ischemic preconditioning. World J Diabetes. 2014; 5(3):258-266. doi: https://doi.org/10.4239/wjd.v5.i3.258

15. Leonard CE, Hennessy S, Han X, et al. Pro- and Antiarrhythmic Actions of Sulfonylureas: Mechanistic and Clinical Evidence. Trends Endocrinol Metab. 2017; 28(8):561-586. doi: https://doi.org/10.1016/j.tem.2017.04.003

16. Douros A, Yin H, Yu OHY, Filion KB, et al. Pharmacologic Differences of Sulfonylureas and the Risk of Adverse Cardiovascular and Hypoglycemic Events. Diabetes Care. 2017; 40(11):1506-1513. doi: https://doi.org/10.2337/dc17-0595

17. Hussien NR, Al-Naimi MS, Rasheed HA, et al. Sulfonylurea and neuroprotection: The bright side of the moon. J Adv Pharm Technol Res. 2018; 9(4):120-123. doi: https://doi.org/10.4103/japtr.JAPTR_317_18

18. Ðanić M, Stanimirov B, Pavlović N, et al. Transport and Biotransformation of Gliclazide and the Effect of Deoxycholic Acid in a Probiotic Bacteria Model. Front Pharmacol. 2019; 10:1083. doi: https://doi.org/10.3389/fphar.2019.01083

19. Banerjee D, Bharaj HS, Banerjee M. PPARγ Agonistic Activity of Sulphonylureas. Endocr Metab Immune Disord Drug Targets. 2019; 19(4):467-471. doi: https://doi.org/10.2174/1871530319666190103125534

20. van Dalem J, Brouwers MCGJ, Stehouwer CDA, et al. Risk of a first-ever acute myocardial infarction and all-cause mortality with sulphonylurea treatment: A population-based cohort study. Diabetes, Obes Metab. 2018; 20(4):1056-1060. doi: https://doi.org/10.1111/dom.13168


Supplementary files

1. Figure 1. Scheme of the study.
Subject
Type Исследовательские инструменты
View (270KB)    
Indexing metadata ▾
2. Figure. 2. Cardiological indicators of glucocardiomonitoring (duration of the Q–Tc interval (a), frequency of ST segment depression (б) and ventricular arrhythmias (в)) in patients with type 2 diabetes mellitus in the main and control groups.
Subject
Type Исследовательские инструменты
View (192KB)    
Indexing metadata ▾

Review

For citations:


Chernikova N.A., Kamynina L.L., Аmetov A.S., Sychov D.A. The clinical aspects ot the sulphonylurea compounds from the position of the cardioprotective approach at patient with type 2 diabetes, using glucocardiomonitoring. Diabetes mellitus. 2022;25(4):378-387. (In Russ.) https://doi.org/10.14341/DM12902

Views: 847


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)