Preview

Diabetes mellitus

Advanced search

Relationship between severe acute respiratory syndrome coronavirus 2 and diabetes mellitus (review)

https://doi.org/10.14341/DM12900

Abstract

Infections caused by SARE-CoV-2 are complicated with the concurrent pathologies, to name hypertension, diabetes mellitus and cardiovascular diseases. High level of glucose in blood weakens the immunity and increase the SARS-CoV-2 replication. Diabetes mellitus aggravates the COVID-19 outcome. The intrusion of SARS-CoV-2 into a host-cell occurs by means of its association with the angiotensin-converting enzyme-2 (ACE 2). Stimulating immune responses the COVID-19 infection causes the cytokine storm, and may result in the lethal outcome in the diabetics.

Recent laboratory studies demonstrated that the type1 and type2 diabetes mellitus is the main consequence in 14% of the patients after corona infection. Thus, in 2% of 14% diabetes started progressing due to the corona virus. In the other, diabetes debut occurred as the direct and negative consequence of the disease. Hyperglycemia results in the formation of protein molecules known as the advanced glycation end products (AGEs). The AGEs and their receptors (RAGE) are of high significance in the host-cell’s virus invasion. Consequently, more strict glucose control is necessary for optimal outcome and reduction in mortality. The better control for the COVID-19 course can be provided by the targeted effect on the RAGE axis. The review helps elucidate the molecular mechanism underlying the exacerbation of pathophysiology in the diabetic COVID-19 patients.

About the Authors

G. M. Artykbaeva
Institute of biophysics and biochemistry, National University of Uzbekistan named after Mirzo Ulugbek
Uzbekistan

Gulnora M. Artykbaeva - PhD in Biology, senior research associate; Scopus Author ID: 6506335901.

174 Student campus, 100174 Tashkent


Competing Interests:

none



T. S. Saatov
Institute of biophysics and biochemistry, National University of Uzbekistan named after Mirzo Ulugbek
Uzbekistan

Talat S. Saatov - PhD in Biology, Professor, Academician of Sciences of the Republic of Uzbekistan; Scopus Author ID: 7003376846.

Tashkent


Competing Interests:

none



References

1. Sarkar S, Das D, Borsingh Wann S, et al. Is diabetes mellitus a wrongdoer to COVID-19 severity? Diabetes Res Clin Pract. 2021;178(4):108936. doi: https://doi.org/10.1016/j.diabres.2021.108936

2. Yang JK, Feng Y, Yuan MY, et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med. 2006;23(6):623-628. doi: https://doi.org/10.1111/j.1464-5491.2006.01861.x

3. Banik GR, Alqahtani AS, Booy R, Rashid H. Risk factors for severity and mortality in patients with MERS-CoV: Analysis of publicly available data from Saudi Arabia. Virol Sin. 2016;31(1):81-84. doi: https://doi.org/10.1007/s12250-015-3679-z

4. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. doi: https://doi.org/10.1016/S0140-6736(20)30566-3

5. Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574. doi: https://doi.org/10.1001/jama.2020.5394

6. Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221-224. doi: https://doi.org/10.21203/rs.2.24749/v1

7. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181:271–80. doi: https://doi.org/10.1016/j.cell.2020.02.052

8. Zhou L, Niu Z, Jiang X, et al. Systemic analysis of tissue cells potentially vulnerable to Sars-Cov-2 infection by the protein-proofed Single-Cell Rna Profiling of Ace2, Tmprss2 and furin proteases. SSRN Electron J. 2020. doi: https://doi.org/10.2139/ssrn.3589839

9. Batlle D, Jose Soler M, Ye M. ACE2 and Diabetes: ACE of ACEs? Diabetes. 2010;59(12):2994-2996. doi: https://doi.org/10.2337/db10-1205

10. Mizuiri S, Hemmi H, Arita M, et al. Expression of ACE and ACE2 in individuals with diabetic Kidney disease and healthy controls. Am J Kidney Dis. 2008;51(4):613-623. doi: https://doi.org/10.1053/j.ajkd.2007.11.022

11. Pal R, Bhansali A. COVID-19, diabetes mellitus and ACE2: The conundrum. Diabetes Res Clin Pract. 2020;(162):108132. doi: https://doi.org/10.1016/j.diabres.2020.108132

12. Wijnant SRA, Jacobs M, Van Eeckhoutte HP, et al. Expression of ACE2, the SARS-CoV-2 receptor, in lung tissue of patients with type 2 diabetes. Diabetes. 2020;69(12):2691-2699. doi: https://doi.org/10.2337/db20-0669

13. Sukumaran V, Tsuchimochi H, Tatsumi E, et al. Azilsartan ameliorates diabetic cardiomyopathy in young db/db mice through the modulation of ACE-2/ANG 1–7/Mas receptor cascade. Biochem Pharmacol. 2017;(144):90-99. doi: https://doi.org/10.1016/j.bcp.2017.07.022

14. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8(4):e21. doi: https://doi.org/10.1016/S2213-2600(20)30116-8

15. Reynolds HR, Adhikari S, Pulgarin C, et al. Renin–angiotensin–aldosterone system inhibitors and risk of Covid-19. N Engl J Med. 2020;382(25):2441-2448. doi: https://doi.org/10.1056/NEJMoa2008975

16. Cohen JB, Hanff TC, William P, et al. Continuation versus discontinuation of renin–angiotensin system inhibitors in patients admitted to hospital with COVID-19: a prospective, randomised, open-label trial. Lancet Respir Med. 2021;9(3):275-284. doi: https://doi.org/10.1016/S2213-2600(20)30558-0

17. Fignani D, Licata G, Brusco N, et al. SARS-CoV-2 receptor angiotensin i-converting enzyme type 2 (ACE2) is expressed in human pancreatic β-Cells and in the human pancreas microvasculature. Front Endocrinol (Lausanne). 2020;(11):596898. doi: https://doi.org/10.3389/fendo.2020.596898

18. Kusmartseva I, Wu W, Syed F, et al. Expression of SARS-CoV-2 entry factors in the pancreas of normal organ donors and Individuals with COVID-19. Cell Metab. 2020;32(6):1041-1051.e6. doi: https://doi.org/10.1016/j.cmet.2020.11.005

19. Yang J-K, Lin S-S, Ji X-J, Guo L-M. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47(3):193-199. doi: https://doi.org/10.1007/s00592-009-0109-4

20. Sathish T, Kapoor N, Cao Y, Tapp RJ, Zimmet P. Proportion of newly diagnosed diabetes in COVID‐19 patients: A systematic review and meta‐analysis. Diabetes, Obes Metab. 2021;23(3):870-874. doi: https://doi.org/10.1111/dom.14269

21. Guo W, Li M, Dong Y, et al. Diabetes is a risk factor for the progression and prognosis of COVID‐19. Diabetes Metab Res Rev. 2020;36(7):e3319. doi: https://doi.org/10.1002/dmrr.3319

22. Wu L, Girgis CM, Cheung NW. COVID‐19 and diabetes: Insulin requirements parallel illness severity in critically unwell patients. Clin Endocrinol (Oxf). 2020;93(4):390-393. doi: https://doi.org/10.1111/cen.14288

23. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98-107. doi: https://doi.org/10.1038/nri2925

24. Tay MZ, Poh CM, Rènia L, et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363-374. doi: https://doi.org/10.1038/s41577-020-0311-8

25. Guo Y-R, Cao Q-D, Hong Z-S, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil Med Res. 2020;7(1):11. doi: https://doi.org/10.1186/s40779-020-00240-0

26. Zhang C, Wu Z, Li J-W, et al. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents. 2020;55(5):105954. doi: https://doi.org/10.1016/j.ijantimicag.2020.105954

27. Tang N, Bai H, Chen X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094-1099. doi: https://doi.org/10.1111/jth.14817

28. Zhou P, Tachedjian M, Wynne JW, et al. Contraction of the type I IFN locus and unusual constitutive expression of IFN-α in bats. Proc Natl Acad Sci. 2016;113(10):2696-2701. doi: https://doi.org/10.1073/pnas.1518240113

29. Ahn M, Anderson DE, Zhang Q, et al. Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nat Microbiol. 2019;4(5):789-799. doi: https://doi.org/10.1038/s41564-019-0371-3

30. De Francesco EM, Vella V, Belfiore A. COVID-19 and diabetes: the importance of controlling RAGE. Front. Endocrinol. 2020;(11):526. doi: https://doi.org/10.3389/fendo.2020.00526

31. Lechleitner M, Koch T, Herold M, et al. Tumour necrosis factor-alpha plasma level in patients with type 1 diabetes mellitus and its association with glycaemic control and cardiovascular risk factors. J Intern Med. 2000;248(1):67-76. doi: https://doi.org/10.1046/j.1365-2796.2000.00705.x

32. Pickup JC, Mattock MB, Chusney GD, Burt D. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia. 1997;40(11):1286-1292. doi: https://doi.org/10.1007/s001250050822

33. Bode B, Garrett V, Messler J, et al. Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States. J Diabetes Sci Technol. 2020;14(4):813-821. doi: https://doi.org/10.1177/1932296820924469

34. Hudson BI, Lippman ME. Targeting RAGE Signaling in Inflammatory Disease. Annu Rev Med. 2018;69(1):349-364. doi: https://doi.org/10.1146/annurev-med-041316-085215

35. Suresh R, Mosser DM. Pattern recognition receptors in innate immunity, host defense, and immunopathology. Adv Physiol Educ. 2013;37(4):284-291. doi: https://doi.org/10.1152/advan.00058.2013

36. Sirois CM, Jin T, Miller AL, et al. RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA. J Exp Med. 2013;210(11):2447-2463. doi: https://doi.org/10.1084/jem.20120201

37. Andersson U, Yang H, Harris H. High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells. Semin Immunol. 2018;38(11):40-48. doi: https://doi.org/10.1016/j.smim.2018.02.011

38. Boteanu RM, Uyy E, Suica VI, Antohe F. High-mobility group box 1 enhances the inflammatory process in diabetic lung. Arch Biochem Biophys. 2015;583(11):55-64. doi: https://doi.org/10.1016/j.abb.2015.07.020

39. Kim EJ, Park SY, Baek SE, et al. HMGB1 increases IL-1β production in vascular smooth muscle cells via NLRP3 inflammasome. Front Physiol. 2018;9(11):55-64. doi: https://doi.org/10.3389/fphys.2018.00313

40. Uchida T, Shirasawa M, Ware LB, et al. Receptor for advanced glycation end-products is a marker of type i cell injury in acute lung injury. Am J Respir Crit Care Med. 2006;173(9):1008-1015. doi: https://doi.org/10.1164/rccm.200509-1477OC

41. Wu H, Li R, Pei L-G, et al. Emerging role of high mobility group box-1 in thrombosis-related diseases. Cell Physiol Biochem. 2018;47(4):1319-1337. doi: https://doi.org/10.1159/000490818

42. Vogel S, Bodenstein R, Chen Q, et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest. 2015;125(12):4638-4654. doi: https://doi.org/10.1172/JCI81660

43. Hoste E, Maueröder C, van Hove L, et al. Epithelial HMGB1 delays skin wound healing and drives tumor initiation by priming neutrophils for NET formation. Cell Rep. 2019;29(9):2689-2701.e4. doi: https://doi.org/10.1016/j.celrep.2019.10.104

44. Zuo Y, Yalavarthi S, Shi H, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;43(7):1408-1415. doi: https://doi.org/10.1172/jci.insight.138999

45. Whittall-García LP, Torres-Ruiz J, Zentella-Dehesa A, et al. Neutrophil extracellular traps are a source of extracellular HMGB1 in lupus nephritis: associations with clinical and histopathological features. Lupus. 2019;28(13):1549-1557. doi: https://doi.org/10.1177/0961203319883936

46. Jeong J, Lee J, Lim J, et al. Soluble RAGE attenuates AngII-induced endothelial hyperpermeability by disrupting HMGB1-mediated crosstalk between AT1R and RAGE. Exp Mol Med. 2019;51(9):1-15. doi: https://doi.org/10.1038/s12276-019-0312-5

47. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-1418. doi: https://doi.org/10.1016/S0140-6736(20)30937-5

48. Bermejo-Martin J, Martín-Fernandez M, López-Mestanza C, et al. Shared features of endothelial dysfunction between sepsis and its preceding risk factors (aging and chronic disease). J Clin Med. 2018;7(11):400. doi: https://doi.org/10.3390/jcm7110400

49. Wang K, Chen W, Zhou YS, et al. SARSCoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv. 2020. doi: https://doi.org/10.1101/2020.03.14.988345

50. Heinzmann D, Noethel M, von Ungern-Sternberg S, et al. CD147 is a novel interaction partner of integrin αMβ2 mediating leukocyte and platelet adhesion. Biomolecules. 2020;10(4):541. doi: https://doi.org/10.3390/biom10040541

51. Sardu C, D’Onofrio N, Balestrieri ML, et al. Outcomes in Patients With Hyperglycemia Affected by COVID-19: Can We Do More on Glycemic Control? Diabetes Care. 2020;43(7):1408-1415. doi: https://doi.org/10.2337/dc20-0723

52. Arabi YM, Dehbi M, Rishu AH, et al. sRAGE in diabetic and non-diabetic critically ill patients: effects of intensive insulin therapy. Crit Care. 2011;15(4):R203. doi: https://doi.org/10.1186/cc10420

53. Ingels C, Derese I, Wouters PJ, et al. Soluble RAGE and the RAGE ligands HMGB1 and S100A12 in critical illness. Shock. 2015;43(2):109-116. doi: https://doi.org/10.1097/SHK.0000000000000278

54. Mi L, Zhang Y, Xu Y, et al. HMGB1/RAGE pro-inflammatory axis promotes vascular endothelial cell apoptosis in limb ischemia/reperfusion injury. Biomed Pharmacother. 2019;116(2):109005. doi: https://doi.org/10.1016/j.biopha.2019.109005

55. Rao NV, Argyle B, Xu X, et al. Low anticoagulant heparin targets multiple sites of inflammation, suppresses heparin-induced thrombocytopenia, and inhibits interaction of RAGE with its ligands. Am J Physiol Physiol. 2010;299(1):C97-C110. doi: https://doi.org/10.1152/ajpcell.00009.2010

56. Ding J, Cui X, Liu Q. Emerging role of HMGB1 in lung diseases: friend or foe. J Cell Mol Med. 2017;21(6):1046-1057. doi: https://doi.org/10.1111/jcmm.13048

57. Takahashi Y, Matsutani N, Dejima H, et al. Therapeutic potential of recombinant thrombomodulin for lung injury after pneumonectomy via inhibition of high-mobility group box 1 in mice. J Trauma Acute Care Surg. 2016;81(5):868-875. doi: https://doi.org/10.1097/TA.0000000000001208

58. Valeriani E, Squizzato A, Gallo A, et al. Efficacy and safety of recombinant human soluble thrombomodulin in patients with sepsis-associated coagulopathy: a systematic review and meta-analysis. J Thromb Haemost JTH. 2020;18(7):1618-1625. doi: https://doi.org/10.1111/jth.14812

59. Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020;181(4):905-913.e7. doi: https://doi.org/10.1016/j.cell.2020.04.004


Supplementary files

1. Figure 1. Schematic representation of SARS-CoV-2 cellular entry and angiotensin-converting enzyme axis function (adapted from Sarkar S. et al., 2021 [1]).
Subject
Type Other
View (405KB)    
Indexing metadata ▾
2. Figure 2. Schematic representation of RAGE axis activation in SARS-COV-2 infected cells in patients with diabetes mellitus (adapted from De Francesco E.M. et al., 2020 [30]).
Subject
Type Other
View (314KB)    
Indexing metadata ▾

Review

For citations:


Artykbaeva G.M., Saatov T.S. Relationship between severe acute respiratory syndrome coronavirus 2 and diabetes mellitus (review). Diabetes mellitus. 2023;26(1):66-74. (In Russ.) https://doi.org/10.14341/DM12900

Views: 1288


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)