Preview

Diabetes mellitus

Advanced search

Regeneration of β-cells of the islet apparatus of the pancreas. Literature review

https://doi.org/10.14341/DM12872

Abstract

Diabetes of both type 1 and type 2 is characterized by a progressive loss of β-cell mass, which contributes to the disruption of glucose homeostasis. The optimal antidiabetic therapy would be simple replacement of lost cells, but at present, many researchers have shown that the pancreas (PZ) of adults has a limited regenerative potential. In this regard, significant efforts of researchers are directed to methods of inducing the proliferation of β-cells, stimulating the formation of β-cells from alternative endogenous sources and/or the generation of β-cells from pluripotent stem cells. Factors that regulate β-cell regeneration under physiological or pathological conditions, such as mediators, transcription factors, signaling pathways and potential pharmaceuticals, are also being intensively studied. In this review, we consider recent scientific studies carried out in the field of studying the development and regeneration of insulin-producing cells obtained from exogenous and endogenous sources and their use in the treatment of diabetes. The literature search while writing this review was carried out using the databases of the RSIC, CyberLeninka, Scopus, Web of Science, MedLine, PubMed for the period from 2005 to 2021. using the following keywords: diabetes mellitus, pancreas, regeneration, β-cells, stem cells, diabetes therapy.

About the Authors

T. E. Pylaev
Saratov State Medical University
Russian Federation

Timofey E. Pylaev, PhD in Biology

Saratov

eLibrary SPIN: 7538-8957


Competing Interests:

 Аuthor report no conflict of interest.



I. V. Smyshlyaeva
Saratov State Medical University
Russian Federation

Irina V. Smyshlyaeva, MD, PhD, Associate Professor

Saratov

eLibrary SPIN: 9593-4739


Competing Interests:

 Аuthor report no conflict of interest.



E. B. Popyhova
Saratov State Medical University
Russian Federation

Era B. Popyhova, PhD, senior research associate

137 Bol’shaya Sadovaya street, 410054, Saratov

eLibrary SPIN:7810-3930


Competing Interests:

 Аuthor report no conflict of interest



References

1. Dedov II, Lisukov IA, Laptev DN. Modern possibilities for using stem cells in diabetes mellitus. Diabetes mellitus. 2014;17(2):20-28. (In Russ.). doi: https://doi.org/10.14341/DM2014220-28

2. Docherty FM, Sussel L. Islet Regeneration: Endogenous and Exogenous Approaches. Int J Mol Sci. 2021;22(7):3306. doi: https://doi.org/10.3390/ijms22073306

3. Pellegrini S, Sordi V, Piemonti L. β-cell transplantation in diabetes mellitus. Diabetes Mellitus. 2013;17(3):11-20. (In Russ.). doi: https://doi.org/10.14341/2072-0351-812

4. Skaletskaya GN, Skaletskiy NN, Sevastianov VI. Prospects of application of tissue-engineered pancreatic constructs in the treatment of type 1 diabetes. Russ J Transplantology Artif Organs. 2017;18(4):133-145. (In Russ.). doi: https://doi.org/10.15825/1995-1191-2016-4-133-145

5. Peng B-Y, Dubey NK, Mishra VK, et al. Addressing Stem Cell Therapeutic Approaches in Pathobiology of Diabetes and Its Complications. J Diabetes Res. 2018;2018(4):1-16. doi: https://doi.org/10.1155/2018/7806435

6. Aguayo-Mazzucato C, Bonner-Weir S. Pancreatic β Cell Regeneration as a Possible Therapy for Diabetes. Cell Metab. 2018;27(1):57-67. doi: https://doi.org/10.1016/j.cmet.2017.08.007

7. Shapiro AMJ, Lakey JRT, Ryan EA, et al. Islet Transplantation in Seven Patients with Type 1 Diabetes Mellitus Using a Glucocorticoid-Free Immunosuppressive Regimen. N Engl J Med. 2000;343(4):230-238. doi: https://doi.org/10.1056/NEJM200007273430401

8. Mozheiko LA. Some aspects of cell replacement therapy in diabetes mellitus. Part II. Perspectives of use of alternative sources of β-cells generating. Journal of the Grodno State Medical University. 2012;4:14-17. (In Russ.).

9. Dufrane D, Gianello P. Pig islet for xenotransplantation in human: structural and physiological compatibility for human clinical application. Transplant Rev. 2012;26(3):183-188. doi: https://doi.org/10.1016/j.trre.2011.07.004

10. Mozheiko LA, Mozheiko MA. Some aspects of cell replaceme nt therapy for diabetes mellitus. Part I . Effects of allo- and xenotransplantation of the pancreas. Journal of the Grodno State Medical University. 2012;3:4-7. (In Russ.).

11. Chinnuswami R, Hussain A, Loganathan G, et al. Porcine Islet Cell Xenotransplantation. Xenotransplantation - Comprehensive Study. 2020;26:183-188. doi: https://doi.org/10.5772/intechopen.90437

12. Zhu H-T, Wang W-L, Yu L, Wang B. Pig-Islet Xenotransplantation: Recent Progress and Current Perspectives. Front Surg. 2014;1(3):183-188. doi: https://doi.org/10.3389/fsurg.2014.00007

13. Pronina EA, Popyhova EB, Stepanova TV, Ivanov AN. Modern directions and prospects of development of regenerative medicine. Modern Problems of Science and Education. 2019;3:197. (In Russ.).

14. Timofeev AV, XiaoFang L, YunFang W, YaLi L, XueTao P. Research status and prospect of stem cells in the treatment of diabetes mellitus. Endokrinologiya: novosti, mneniya, obuchenie. 2014;2:7-15. (In Russ.).

15. Zeeshan N, Naveed M, Asif DF, et al. Stem cell technology for the treatment of diabetes. J Cell Sci Ther. 2017;08(02):183-188. doi: https://doi.org/10.4172/2157-7013.1000263

16. Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. 2006;126(4):663-676. doi: https://doi.org/10.1016/j.cell.2006.07.024

17. Arutyunyan IV, Fatkhudinov TK, Makarov AV, et al. Regenerative medicine of pancreatic islets. World J Gastroenterol. 2020;26(22):2948-2966. doi: https://doi.org/10.3748/wjg.v26.i22.2948

18. Wang K-L, Tao M, Wei T-J, Wei R. Pancreatic β cell regeneration induced by clinical and preclinical agents. World J Stem Cells. 2021;13(1):64-77. doi: https://doi.org/10.4252/wjsc.v13.i1.64

19. Wang P, Karakose E, Choleva L, et al. Human Beta Cell Regenerative Drug Therapy for Diabetes: Past Achievements and Future Challenges. Front Endocrinol (Lausanne). 2021;12(1):64-77. doi: https://doi.org/10.3389/fendo.2021.671946

20. Pronina EA, Maslyakov VV, Ivanov AN, et al. Analysis of regeneration mechanisms in auto ransplantation. IP Pavlov Russ Med Biol Her. 2019;27(3):393-406. doi: https://doi.org/10.23888/PAVLOVJ2019273393-406

21. Bhonde RR, Sheshadri P, Sharma S, Kumar A. Making surrogate β-cells from mesenchymal stromal cells: Perspectives and future endeavors. Int J Biochem Cell Biol. 2014;46:90-102. doi: https://doi.org/10.1016/j.biocel.2013.11.006

22. Jin E, Djabali E, Dadrass F, Hannon E. Reviewing Major Mechanisms of β-Cell Regeneration: A Prospective Treatment for Diabetes Mellitus. Georg Med Rev. 2020;4(1):90-102. doi: https://doi.org/10.52504/001c.12643

23. Iskovich S, Goldenberg-Cohen N, Stein J, et al. Elutriated Stem Cells Derived from the Adult Bone Marrow Differentiate into Insulin-Producing Cells In Vivo and Reverse Chemical Diabetes. Stem Cells Dev. 2012;21(1):86-96. doi: https://doi.org/10.1089/scd.2011.0057

24. Bell GI, Broughton HC, Levac KD, et al. Transplanted Human Bone Marrow Progenitor Subtypes Stimulate Endogenous Islet Regeneration and Revascularization. Stem Cells Dev. 2012;21(1):97-109. doi: https://doi.org/10.1089/scd.2010.0583

25. Ezquer F, Ezquer M, Contador D, et al. The Antidiabetic Effect of Mesenchymal Stem Cells Is Unrelated to Their Transdifferentiation Potential But to Their Capability to Restore Th1/Th2 Balance and to Modify the Pancreatic Microenvironment. Stem Cells. 2012;30(8):1664-1674. doi: https://doi.org/10.1002/stem.1132

26. Zhong F, Jiang Y. Endogenous Pancreatic β Cell Regeneration: A Potential Strategy for the Recovery of β Cell Deficiency in Diabetes. Front Endocrinol (Lausanne). 2019;10(8):1664-1674. doi: https://doi.org/10.3389/fendo.2019.00101

27. Kulkarni RN, Mizrachi E-B, Ocana AG, Stewart AF. Human β-Cell Proliferation and Intracellular Signaling. Diabetes. 2012;61(9):2205-2213. doi: https://doi.org/10.2337/db12-0018

28. Bernal-Mizrachi E, Kulkarni RN, Scott DK, et al. Human β-Cell Proliferation and Intracellular Signaling Part 2: Still Driving in the Dark Without a Road Map. Diabetes. 2014;63(3):819-831. doi: https://doi.org/10.2337/db13-1146

29. Stewart AF, Hussain MA, García-Ocaña A, et al. Human β-Cell Proliferation and Intracellular Signaling: Part 3. Diabetes. 2015;64(6):1872-1885. doi: https://doi.org/10.2337/db14-1843

30. Medsbed S. Issledovanie effekta i deystviya liraglutida pri sakharnom diabete (LEADTM) Expert Rev. Endocrinol. Metab. 4(2), 119-129 (2009). Diabetes Mellitus. 2009;12(5):11-20. (In Russ.). doi: https://doi.org/10.14341/2072-0351-5809

31. Fujitani Y. How does glucagon-like peptide 1 stimulate human β-cell proliferation? A lesson from islet graft experiments. J Diabetes Investig. 2018;9(6):1255-1257. doi: https://doi.org/10.1111/jdi.12861

32. Heit JJ, Apelqvist ÅA, Gu X, et al. Calcineurin/NFAT signalling regulates pancreatic β-cell growth and function. Nature. 2006;443(7109):345-349. doi: https://doi.org/10.1038/nature05097

33. Villalba A, Rodriguez-Fernandez S, Perna-Barrull D, et al. Repurposed Analog of GLP-1 Ameliorates Hyperglycemia in Type 1 Diabetic Mice Through Pancreatic Cell Reprogramming. Front Endocrinol (Lausanne). 2020;11(7109):345-349. doi: https://doi.org/10.3389/fendo.2020.00258

34. Mamedova EO, Dimitrova DA, Belaya ZhE, Melnichenko GA. The role of non-coding RNA in the pathogenesis of multiple endocrine neoplasia syndrome type 1. Problems of Endocrinology. 2020;66(2):4-12. (In Russ.). doi: https://doi.org/10.14341/probl12413

35. Chamberlain CE, Scheel DW, McGlynn K, et al. Menin determines K-RAS proliferative outputs in endocrine cells. J Clin Invest. 2014;124(9):4093-4101. doi: https://doi.org/10.1172/JCI69004

36. Balaji S, Napolitano T, Silvano S, et al. Epigenetic Control of Pancreatic Regeneration in Diabetes. Genes (Basel). 2018;9(9):448. doi: https://doi.org/10.3390/genes9090448

37. Wang P, Alvarez-Perez J-C, Felsenfeld DP, et al. A highthroughput chemical screen reveals that harminemediated inhibition of DYRK1A increases human pancreatic beta cell replication. Nat Med. 2015;21(4):383-388. doi: https://doi.org/10.1038/nm.3820

38. Socorro M, Esni F. Pancreatic Regeneration: Models, Mechanisms, and Inconsistencies. Pancreapedia: Exocrine Pancreas Knowledge Base. 2017. doi: https://doi.org/10.3998/panc.2017.03

39. Xu X, D’Hoker J, Stangé G, et al. β Cells Can Be Generated from Endogenous Progenitors in Injured Adult Mouse Pancreas. Cell. 2008;132(2):197-207. doi: https://doi.org/10.1016/j.cell.2007.12.015

40. Kopp JL, Dubois CL, Schaffer AE, et al. Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development. 2011;138(4):653-665. doi: https://doi.org/10.1242/dev.056499

41. Van de Casteele M, Leuckx G, Baeyens L, et al. Neurogenin 3+ cells contribute to β-cell neogenesis and proliferation in injured adult mouse pancreas. Cell Death Dis. 2013;4(3):e523-e523. doi: https://doi.org/10.1038/cddis.2013.52

42. Yarmolinskaya MI, Andreyeva NYu, Abashova EI, Misharina EV. Experimental models of type 1 diabetes. Journal of Obstetrics and Women’s Diseases. 2019;68(2):109-118. (In Russ.). doi: https://doi.org/10.17816/JOWD682109-118

43. Saisho Y, Manesso E, Butler AE, et al. Ongoing β-Cell Turnover in Adult Nonhuman Primates Is Not Adaptively Increased in Streptozotocin-Induced Diabetes. Diabetes. 2011;60(3):848-856. doi: https://doi.org/10.2337/db09-1368

44. Baeyens L, De Breuck S, Lardon J, et al. In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia. 2005;48(1):49-57. doi: https://doi.org/10.1007/s00125-004-1606-1

45. Gvazava IG, Rogovaya OS, Borisov MA, et al. Pathogenesis of type 1 diabetes mellitus and rodent experimental models. Acta naturae. 2018;10(1):25-35. (In Russ.).

46. Mordes JP, Bortell R, Blankenhorn EP, et al. Rat Models of Type 1 Diabetes: Genetics, Environment, and Autoimmunity. ILAR J. 2004;45(3):278-291. doi: https://doi.org/10.1093/ilar.45.3.278

47. Moses RG, Cefalu WT. Considerations in the Management of Gestational Diabetes Mellitus: “You Are What Your Mother Ate!” Diabetes Care. 2016;39(1):13-15. doi: https://doi.org/10.2337/dci15-0030

48. Lauenborg J, Crusell M, Mathiesen ER, Damm P. Maternal Long-Term Outcomes after a Pregnancy Complicated by Gestational Diabetes Mellitus. Diabetes Care. 2020;39:223-233. doi: https://doi.org/10.1159/000480177

49. Wu J, Yang X, Chen B, Xu X. Pancreas β cell regeneration and type 1 diabetes (Review). Exp Ther Med. 2015;9(3):653-657. doi: https://doi.org/10.3892/etm.2014.2163

50. Karnik SK, Chen H, McLean GW, et al. Menin Controls Growth of Pancreatic ß-Cells in Pregnant Mice and Promotes Gestational Diabetes Mellitus. Science (80- ). 2007;318(5851):806-809. doi: https://doi.org/10.1126/science.1146812

51. Butler AE, Cao-Minh L, Galasso R, et al. Adaptive changes in pancreatic beta cell fractional area and beta cell turnover in human pregnancy. Diabetologia. 2010;53(10):2167-2176. doi: https://doi.org/10.1007/s00125-010-1809-6

52. Sullivan BA, Hollister-Lock J, Bonner-Weir S, Weir GC. Reduced Ki67 Staining in the Postmortem State Calls Into Question Past Conclusions About the Lack of Turnover of Adult Human β-Cells. Diabetes. 2015;64(5):1698-1702. doi: https://doi.org/10.2337/db14-1675

53. Yoneda S, Uno S, Iwahashi H, et al. Predominance of β-Cell Neogenesis Rather Than Replication in Humans With an Impaired Glucose Tolerance and Newly Diagnosed Diabetes. J Clin Endocrinol Metab. 2013;98(5):2053-2061. doi: https://doi.org/10.1210/jc.2012-3832

54. Mezza T, Muscogiuri G, Sorice GP, et al. Insulin Resistance Alters Islet Morphology in Nondiabetic Humans. Diabetes. 2014;63(3):994-1007. doi: https://doi.org/10.2337/db13-1013

55. Hanley SC, Austin E, Assouline-Thomas B, et al. β-Cell Mass Dynamics and Islet Cell Plasticity in Human Type 2 Diabetes. Endocrinology. 2010;151(4):1462-1472. doi: https://doi.org/10.1210/en.2009-1277


Supplementary files

1. Figure 1. Pancreatic cells that can give rise to islet β-cells (adapted from C. Aguayo-Mazzucato et al., 2018).
Subject
Type Исследовательские инструменты
View (236KB)    
Indexing metadata ▾
2. Figure 2. Possible exogenous sources of pancreatic β-cells (adapted from F.M. Docherty and L. Sussel, 2021).
Subject
Type Исследовательские инструменты
View (288KB)    
Indexing metadata ▾

Review

For citations:


Pylaev T.E., Smyshlyaeva I.V., Popyhova E.B. Regeneration of β-cells of the islet apparatus of the pancreas. Literature review. Diabetes mellitus. 2022;25(4):395-404. (In Russ.) https://doi.org/10.14341/DM12872

Views: 24764


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)