Gliflozins position update in the treatment algorithms for patients with type 2 diabetes mellitus and chronic kidney disease: new pathogenetic mechanisms and data from subanalyses of the large randomised control trails
https://doi.org/10.14341/DM12864
Abstract
The series of the cardiovascular outcome trails have demonstrated the nephroprotective properties of the gliflozins. Canagliflozin in the CREDENCE, which was the first study with a primary focus on the evaluation of the nephroprotective properties of gliflozin, have demonstrated the possibility to slow the progression of the renal disease. The paper summarizes the additional data from the CREDENCE trail: assessment of the efficacy of canagliflozin by initial eGFR; efficacy in individuals with GFR <30 ml/min/1.73 m2 ; long-term effects of canagliflozin on anaemia-related outcomes; effects of canagliflozin on serum potassium; effects on heart failure and cardiovascular mortality. There are discussed the current treatment algorithms for patients with type 2 diabetes and CKD where using of gliflozins is a priority option. Canagliflozin is a drug with a relatively low ratio of SGLT1/SGLT2 selectivity. The effects of the inhibition of SGLT1 transport in the kidney and in the intestine are described and their additional influence on reducing of the postprandial glycemia and additional nephroprotection.
About the Authors
O. Y. SukharevaOlga Y. Sukhareva, MD, PhD
SPIN: 5650-4416
11 Dm. Ulyanova str., Moscow, 117036
Competing Interests:
no
Z. T. Zuraeva
Russian Federation
Zamira T. Zuraeva, MD, PhD
SPIN: 6002-0455
Moscow
Competing Interests:
no
M. S. Shamhalova
Russian Federation
Minara S. Shamhalova, MD, PhD
SPIN: 4942-5481
Moscow
Competing Interests:
no
References
1. Schwartz SS, Epstein S, Corkey BE, et al. A Unified Pathophysiological Construct of Diabetes and its Complications. Trends Endocrinol Metab. 2017;28(9):645-655. doi: https://doi.org/10.1016/j.tem.2017.05.005
2. Gerich JE, Meyer C, Woerle HJ, Stumvoll M. Renal Gluconeogenesis. Diabetes Care. 2001;24(2):382-391. doi: https://doi.org/10.2337/diacare.24.2.382
3. Bergman H, Drury DR. The relationship of kidney function to the glucose utilization of the extra abdominal tissues. Am J Physiol Content. 1938;124(2):279-284. doi: https://doi.org/10.1152/ajplegacy.1938.124.2.279
4. Meyer C, Stumvoll M, Nadkarni V, et al. Abnormal renal and hepatic glucose metabolism in type 2 diabetes mellitus. J Clin Invest. 1998;102(3):619-624. doi: https://doi.org/10.1172/JCI2415
5. Bays H. From victim to ally: the kidney as an emerging target for the treatment of diabetes mellitus. Curr Med Res Opin. 2009;25(3):671-681. doi: https://doi.org/10.1185/03007990802710422
6. Onyango AN. Mechanisms of the Regulation and Dysregulation of Glucagon Secretion. Oxid Med Cell Longev. 2020;2020:1-9. doi: https://doi.org/10.1155/2020/3089139
7. McGuire DK, Shih WJ, Cosentino F, et al. Association of SGLT2 Inhibitors With Cardiovascular and Kidney Outcomes in Patients With Type 2 Diabetes. JAMA Cardiol. 2021;6(2):148. doi: https://doi.org/10.1001/jamacardio.2020.4511
8. Zhang J, Wei J, Jiang S, et al. Macula Densa SGLT1-NOS1- Tubuloglomerular Feedback Pathway, a New Mechanism for Glomerular Hyperfiltration during Hyperglycemia. J Am Soc Nephrol. 2019;30(4):578-593. doi: https://doi.org/10.1681/ASN.2018080844
9. Carlström M. The Other Glucose Transporter, SGLT1 – Also a Potential Trouble Maker in Diabetes? J Am Soc Nephrol. 2019;30(4):519-521. doi: https://doi.org/10.1681/ASN.2019020171
10. Cinti F, Moffa S, Impronta F, et al. Spotlight on ertugliflozin and its potential in the treatment of type 2 diabetes: evidence to date. Drug Des Devel Ther. 2017;11:2905-2919. doi: https://doi.org/10.2147/DDDT.S114932
11. Kashiwagi A, Maegawa H. Metabolic and hemodynamic effects of sodium-dependent glucose cotransporter 2 inhibitors on cardio-renal protection in the treatment of patients with type 2 diabetes mellitus. J Diabetes Investig. 2017;8(4):416-427. doi: https://doi.org/10.1111/jdi.12644
12. Thomas MC, Cherney DZI. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia. 2018;61(10):2098-2107. doi: https://doi.org/10.1007/s00125-018-4669-0
13. Zelniker TA, Braunwald E. Cardiac and Renal Effects of SodiumGlucose Co-Transporter 2 Inhibitors in Diabetes. J Am Coll Cardiol. 2018;72(15):1845-1855. doi: https://doi.org/10.1016/j.jacc.2018.06.040
14. Heerspink HJL, Kosiborod M, Inzucchi SE, Cherney DZI. Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int. 2018;94(1):26-39. doi: https://doi.org/10.1016/j.kint.2017.12.027
15. Salukhov V V, Khalimov YS, Shustov SB, Popov SI. SGLT2 inhibitors and kidneys: mechanisms and main effects in diabetes mellitus patients. Diabetes mellitus. 2021;23(5):475-491. (In Russ.). doi: https://doi.org/10.14341/DM12123
16. Shestakova MV, Sukhareva OYu. Gliflozins: glucose-lowering and nonglycemic effects of new class of antidiabetic medications. Clin. Pharmacol. Ther. 2016;25(2):65-71. (In Russ.).
17. Cherney DZI, Perkins BA, Soleymanlou N, et al. Renal Hemodynamic Effect of Sodium-Glucose Cotransporter 2 Inhibition in Patients With Type 1 Diabetes Mellitus. Circulation. 2014;129(5):587-597. doi: https://doi.org/10.1161/CIRCULATIONAHA.113.005081
18. Heerspink HJL, Desai M, Jardine M, et al. Canagliflozin Slows Progression of Renal Function Decline Independently of Glycemic Effects. J Am Soc Nephrol. 2017;28(1):368-375. doi: https://doi.org/10.1681/ASN.2016030278
19. Yaribeygi H, Butler AE, Atkin SL, et al. Sodium–glucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: Possible molecular pathways. J Cell Physiol. 2019;234(1):223-230. doi: https://doi.org/10.1002/jcp.26851
20. Tonneijck L, Muskiet MH, Smits MM, et al. Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment. J Am Soc Nephrol. 2017;28(4):1023-1039. doi: https://doi.org/10.1681/ASN.2016060666
21. Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med. 2016;375(4):323-334. doi: https://doi.org/10.1056/NEJMoa1515920
22. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117-2128. doi: https://doi.org/10.1056/NEJMoa1504720
23. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017;377(7):644-657. doi: https://doi.org/10.1056/NEJMoa1611925
24. Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019;380(4):347-357. doi: https://doi.org/10.1056/NEJMoa1812389
25. Cherney DZI, Charbonnel B, Cosentino F, et al. Effects of ertugliflozin on kidney composite outcomes, renal function and albuminuria in patients with type 2 diabetes mellitus: an analysis from the randomised VERTIS CV trial. Diabetologia. 2021;64(6):1256-1267. doi: https://doi.org/10.1007/s00125-021-05407-5
26. Zelniker TA, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393(10166):31-39. doi: https://doi.org/10.1016/S0140-6736(18)32590-X
27. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295-2306. doi: https://doi.org/10.1056/NEJMoa1811744
28. Brenner BM, Cooper ME, de Zeeuw D, et al. RENAAL Study Investigators. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861-869. doi: https://doi.org/10.1056/NEJMoa011161
29. Lewis EJ, Hunsicker LG, Clarke WR, et al. Collaborative Study Group. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851-860. doi: https://doi.org/10.1056/NEJMoa011303
30. Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. DAPA-CKD Trial Committees and Investigators. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2020;383(15):1436-1446. doi: https://doi.org/10.1056/NEJMoa2024816
31. Jardine MJ, Zhou Z, Mahaffey KW, et al. CREDENCE Study Investigators. Renal, Cardiovascular, and Safety Outcomes of Canagliflozin by Baseline Kidney Function: A Secondary Analysis of the CREDENCE Randomized Trial. J Am Soc Nephrol. 2020;31(5):1128-1139. doi: https://doi.org/10.1681/ASN.2019111168
32. Bakris G, Oshima M, Mahaffey KW, et al. Effects of Canagliflozin in Patients with Baseline eGFR <30 ml/min per 1.73 m(2): Subgroup Analysis of the Randomized CREDENCE Trial. Clin J Am Soc Nephrol. 2020;15(12):1705-1714. doi: https://doi.org/10.2215/CJN.10140620
33. Herat LY, Magno AL, Rudnicka C, et al. SGLT2 Inhibitor–Induced Sympathoinhibition. JACC Basic to Transl Sci. 2020;5(2):169-179. doi: https://doi.org/10.1016/j.jacbts.2019.11.007
34. El-Achkar TM, Ohmit SE, Mccullough PA, et al. Higher prevalence of anemia with diabetes mellitus in moderate kidney insufficiency: The Kidney Early Evaluation Program. Kidney Int. 2005;67(4):1483-1488. doi: https://doi.org/10.1111/j.1523-1755.2005.00226.x
35. Lambers Heerspink HJ, de Zeeuw D, Wie L, et al. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15(9):853-862. doi: https://doi.org/10.1111/dom.12127
36. Oshima M, Neuen BL, Jardine MJ, et al. Effects of canagliflozin on anaemia in patients with type 2 diabetes and chronic kidney disease: a post-hoc analysis from the CREDENCE trial. Lancet Diabetes Endocrinol. 2020;8(11):903-914. doi: https://doi.org/10.1016/S2213-8587(20)30300-4
37. Inzucchi SE, Zinman B, Fitchett D, et al. How Does Empagliflozin Reduce Cardiovascular Mortality? Insights From a Mediation Analysis of the EMPA-REG OUTCOME Trial. Diabetes Care. 2018;41(2):356-363. doi: https://doi.org/10.2337/dc17-1096
38. Li J, Neal B, Perkovic V, et al. Mediators of the effects of canagliflozin on kidney protection in patients with type 2 diabetes. Kidney Int. 2020;98(3):769-777. doi: https://doi.org/10.1016/j.kint.2020.04.051
39. Neuen BL, Oshima M, Perkovic V, et al. Effects of canagliflozin on serum potassium in people with diabetes and chronic kidney disease: the CREDENCE trial. Eur Heart J. 2021;42(48):4891-4901. doi: https://doi.org/10.1093/eurheartj/ehab497
40. Arnott C, Li JW, Cannon CP, et al. The effects of canagliflozin on heart failure and cardiovascular death by baseline participant characteristics: Analysis of the CREDENCE trial. Diabetes Obes Metab. 2021;23(7):1652-1659. doi: https://doi.org/10.1111/dom.14386
41. Mahaffey KW, Jardine MJ, Bompoint S, et al. Canagliflozin and Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus and Chronic Kidney Disease in Primary and Secondary Cardiovascular Prevention Groups. Circulation. 2019;140(9):739-750. doi: https://doi.org/10.1161/CIRCULATIONAHA.119.042007
42. Dedov II, Shestakova MV, Maiorov AYu, et al. Algoritmy spetsializirovannoi meditsinskoi pomoshchi bol’nym sakharnym diabetom. 10-i vypusk (dopolnennyi). Moscow: 2021. (In Russ.). Доступно по: https://www.endocrincentr.ru/sites/default/files/specialists/science/clinicrecomendations/algoritmy_sd_kniga_10-y_vypusk_dopolnennyy.pdf
43. American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2021. Diabetes Care. 2021;44(S1):S111-124. doi: https://doi.org/10.2337/dc21-S009
44. Polidori D, Sha S, Mudaliar S, et al. Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: results of a randomized, placebo-controlled study. Diabetes Care. 2013;36(8):2154-2161. doi: https://doi.org/10.2337/dc12-2391
45. Zaccardi F, Webb DR, Htike ZZ, et al. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes Metab. 2016;18(8):783-794. doi: https://doi.org/10.1111/dom.12670
46. See RM, Teo YN, Teo YH, et al. Effects of Sodium-Glucose Cotransporter 2 on Amputation Events: A Systematic Review and Meta-Analysis of Randomized-Controlled Trials. Pharmacology. 2021:1-8. doi: https://doi.org/10.1159/000520903
47. Dedov II, Shestakova MV, Mayorov AYu, et al. Standards of specialized diabetes care. Diabetes Mellitus. 2019;22(S1):1-144 (In Russ.). doi: https://doi.org/10.14341/DM221S1
48. Buse JB, Wexler DJ, Tsapas A, et al. 2019 Update to: Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020;43(2):487-493. doi: https://doi.org/10.2337/dci19-0066
49. Garber AJ, Handelsman Y, Grunberger G, et al. Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm — 2020 Executive Summary. Endocr Pract. 2020;26(1):107-139. doi: https://doi.org/10.4158/CS-2019-0472
50. Durkin M, Blais J. Linear Projection of Estimated Glomerular Filtration Rate Decline with Canagliflozin and Implications for Dialysis Utilization and Cost in Diabetic Nephropathy. Diabetes Ther. 202112(2):499–508. doi: https://doi.org/10.1007/s13300-020-00953-4
Supplementary files
|
1. Рисунок 1. Натрий-глюкозный котранспортер 1-го типа и NO-синтаза в клетках почечных канальцев в области macula densa [8]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(313KB)
|
Indexing metadata ▾ |
|
2. Рисунок 2. Механизм клубочковой гиперфильтрации при внутриканальцевой гипергликемии (ось SGLT1-NOS1-ТГОС в macula densa может опосредовать клубочковую гиперфильтрацию при внутриканальцевой гипергликемии) [8]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(141KB)
|
Indexing metadata ▾ |
|
3. Рисунок 3. Эффекты совместного ингибирования натрий-глюкозных котранспортеров 1-го и 2-го типа [9]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(355KB)
|
Indexing metadata ▾ |
|
4. Рисунок 4. Динамика показателя расчетной скорости клубочковой фильтрации в исследовании CREDENCE на фоне терапии канаглифлозином 100 мг в подгруппах пациентов с различными исходными показателями (60–<90 мл/мин/1,73 м2, 45–<60 мл/мин/1,73 м2, 30–<45 мл/мин/1,73 м2) [31]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(286KB)
|
Indexing metadata ▾ |
|
5. Рисунок 5. Динамика расчетной скорости клубочковой фильтрации у пациентов с исходным значением <30 мл/мин/1,73 м2 в исследовании CREDENCE. Адаптировано G. Bakris, 2020 [32]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(167KB)
|
Indexing metadata ▾ |
Review
For citations:
Sukhareva O.Y., Zuraeva Z.T., Shamhalova M.S. Gliflozins position update in the treatment algorithms for patients with type 2 diabetes mellitus and chronic kidney disease: new pathogenetic mechanisms and data from subanalyses of the large randomised control trails. Diabetes mellitus. 2021;24(6):553-564. (In Russ.) https://doi.org/10.14341/DM12864

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).