Preview

Diabetes mellitus

Advanced search

Diabetes mellitus and long-time outcomes of autovenous femoro-popliteal bypass

https://doi.org/10.14341/DM12858

Abstract

BACKGROUND: the effect of diabetes mellitus on the long-term patency of autovenous femoro-popliteal bypass has not been definitively determined AIM: to determine the effect of diabetes mellitus on the long-term outcomes of autovenous femoral-popliteal bypass.

MATERIALS AND METHODS: the results of treatment of 648 patients who underwent autovenous femoral-popliteal bypass were analyzed. The patients were divided into 2 clinical groups: the first group included 367 patients with diabetes mellitus, the second — 281 patients without the named disease. The groups did not differ significantly in the incidence of concomitant pathology.

RESULTS: occlusion of the autovenous conduit within a 5-year period after surgical treatment was observed in 218 patients of the first group (59.4%) and 72 patients of the second group (25.6%) (p <0.01, χ2 = 39.05, RR = 1.78; CI = 1.53–2.12). The average service life of the autovenous femoral-popliteal bypass was 63.49 months in patients of the first group, and 107.46 months in the second. The decompensated course of diabetes mellitus was observed in 203 patients (55.2%). Among patients with decompensated diabetes mellitus, occlusion of the autovenous femoral-popliteal bypass was observed in 95 patients (46.8%), in 104 patients the autovenous conduit was passable (51.2%; p = 0.449, χ2 = 0.57). Decompensated course of diabetes mellitus may contribute to a decrease in the service life of autovenous femoro-popliteal bypass.

CONCLUSION: the presence of diabetes mellitus, and especially its decompensated course, can negatively affect the patency of autovenous femoro-popliteal bypass in the long term.

About the Authors

A. S. Artemova
National Medical Research Center named after V.A. Almazov
Russian Federation

Anastasia S. Artemova - MD, PhD student. ; Researcher ID: M-3999-2017; Scopus Author ID: 57209318396

2 Akkuratova street, 194156 St. Petersburg


Competing Interests:

none



M. A. Chernyavskiy
National Medical Research Center named after V.A. Almazov
Russian Federation

Mikhail A. Chernyavskiy - MD, PhD, senior research associate; Researcher ID: AIB-3019-2022; Scopus Author ID: 57192700135.

St. Petersburg


Competing Interests:

none



References

1. Campia U, Gerhard-Herman M, Piazza G, Goldhaber SZ. Peripheral artery disease: past, present, and future. Am J Med. 2019; 132(10):1133-1141. doi: https://doi.org/10.1016/j.amjmed.2019.04.043

2. Fowkes FG, Aboyans V, Fowkes FJ, et al. Peripheral artery disease: epidemiology and global perspectives. Nat Rev Cardiol. 2017; 14(3):156-170. doi: https://doi.org/10.1038/nrcardio.2016.179

3. Decker JA, Varga-Szemes A, Schoepf UJ, et al. In-patient care trends in peripheral artery disease in the German healthcare system over the past decade. Eur Radiol. 2022;32(3):1697-1708. doi: https://doi.org/10.1007/s00330-021-08285-y

4. Glushkov NI, Ivanov MA, Artemova AS. Results of various revascularization methods in patients with critical ischemia of lower limbs due to peripheral atherosclerosis. Kardiol i serdechno-sosudistaya khirurgiya. 2017;10(3):50. (In Russ.)]. doi: https://doi.org/10.17116/kardio201710350-56

5. Dorigo W, Piffaretti G, Fargion A, et al. A Retrospective comparison between hybrid treatment and prosthetic above-the-knee femoropopliteal bypass in the management of the obstructive disease of the superficial femoral artery. World J Surg. 2020;44(10):3555-3563. doi: https://doi.org/10.1007/s00268-020-05616-w

6. Sigvant B, Lundin F, Wahlberg E. The risk of disease progression in peripheral arterial disease is higher than expected: A metaanalysis of mortality and disease progression in peripheral arterial disease. Eur J Vasc Endovasc Surg. 2016;51(3):395-403. doi: https://doi.org/10.1016/j.ejvs.2015.10.022

7. Özpak B. Drug-eluting balloon treatment in femoropopliteal in-stent restenosis of different lengths. Turkish J Thorac Cardiovasc Surg. 2020;28(3):460-466. doi: https://doi.org/10.5606/tgkdc.dergisi.2020.18980

8. Glushkov NI, Ivanov MA, Puzdryak PD, et al. Metabolic disorder and outcomes of reconstructive interventions in patients with peripheral arterial disease. Her North-Western State Med Univ named after II Mechnikov. 2019;11(3):33-40. (In Russ.)]. doi: https://doi.org/10.17816/mechnikov201911333-40

9. Aday AW, Everett BM. Dyslipidemia profiles in patients with peripheral artery disease. Curr Cardiol Rep. 2019;21(6):42. doi: https://doi.org/10.1007/s11886-019-1129-5

10. Demarchi A, Somaschini A, Cornara S, Androulakis E. Peripheral artery disease in diabetes mellitus: focus on novel treatment options. Curr Pharm Des. 2020;26(46):5953-5968. doi: https://doi.org/10.2174/1389201021666201126143217

11. Dedov II, Shestakova MV, Mayorov AY, et al. Diabetes mellitus type 2 in adults. Diabetes mellitus. 2020;23(2S):4-102. (In Russ.)]. doi: https://doi.org/10.14341/DM12507

12. Kobalava ZD, Konradi AO, Nedogoda SV, et al. Arterial hypertension in adults. Clinical guidelines 2020. Russian Journal of Cardiology. 2020;25(3):3786. (In Russ.)]. doi: https://doi.org/10.15829/1560-4071-2020-3-3786

13. Russian Society of Cardiology (RSC). 2020 Clinical practice guidelines for Stable coronary artery disease. Russian Journal of Cardiology. 2020;25(11):4076. (In Russ.)]. doi: https://doi.org/10.15829/29/1560-4071-2020-4076

14. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure [published correction appears in Eur Heart J. 2021 Oct 14. Eur Heart J. 2021;42(36):3599-3726. doi: https://doi.org/10.1093/eurheartj/ehab368

15. Clinical recommendations. Chronic kidney disease (CKD). Nephrology (Saint-Petersburg). 2021;25(5):10-82. (In Russ.)

16. Hur KY, Jun JE, Choi YJ, et al. Color Doppler ultrasonography is a useful tool for diagnosis of peripheral artery disease in type 2 diabetes mellitus patients with ankle-brachial index 0.91 to 1.40. Diabetes Metab J. 2018;42(1):63-73. doi: https://doi.org/10.4093/dmj.2018.42.1.63

17. Artemova AS, Chernyavskiy MA. Relationship of dyslipidemia and autovenous femoro-popliteal bypass outcome. Ateroscleroz. 2022;18(1):33-37. (In Russ.). doi: https://doi.org/10.52727/2078-256Х-2022-18-1-33-37

18. Barrera-Guarderas F, Carrasco-Tenezaca F, De la Torre-Cisneros K. Peripheral artery disease in type 2 diabetes mellitus: survival analysis of an ecuadorian population in primary care. J Prim Care Community Health. 2020;11(3):215013272095744. doi: https://doi.org/10.1177/2150132720957449

19. Fan W, Han D, Sun Z, et al. Endothelial deletion of mTORC1 protects against hindlimb ischemia in diabetic mice via activation of autophagy, attenuation of oxidative stress and alleviation of inflammation. Free Radic Biol Med. 2017;108(3):725-740. doi: https://doi.org/10.1016/j.freeradbiomed.2017.05.001

20. Signorelli SS, Katsiki N. Oxidative stress and inflammation: their role in the pathogenesis of peripheral artery disease with or without type 2 diabetes mellitus. Curr Vasc Pharmacol. 2018; 16(6):547-554. doi: https://doi.org/10.2174/1570161115666170731165121


Supplementary files

1. Figure 1. Glycemia in patients with/without autovenous femoral-popliteal graft occlusion.
Subject
Type Исследовательские инструменты
View (206KB)    
Indexing metadata ▾
2. Figure 2. Dependence of the service life of the autovenous conduit on glycemia in patients of the 1st clinical group.
Subject
Type Исследовательские инструменты
View (194KB)    
Indexing metadata ▾
3. Figure 3. Dependence of the service life of an autovenous conduit on the level of glycated hemoglobin in patients of the 1st clinical group.
Subject
Type Исследовательские инструменты
View (208KB)    
Indexing metadata ▾

Review

For citations:


Artemova A.S., Chernyavskiy M.A. Diabetes mellitus and long-time outcomes of autovenous femoro-popliteal bypass. Diabetes mellitus. 2023;26(2):182-191. (In Russ.) https://doi.org/10.14341/DM12858

Views: 847


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)