Dysfunction of the meibomian glands in patients with diabetes mellitus
https://doi.org/10.14341/DM12798
Abstract
The prevalence of diabetes mellitus has increased in recent decades. The most common ophthalmic manifestations of diabetes mellitus are retinopathy, epitheliopathies, corneal erosion and dry eye syndrome, the symptoms of which are more pronounced than in people without diabetes. The meibomian glands, which are the producer of various lipids, participate in the formation of the lipid layer of the tear film, which prevents the evaporation of the water-mucin phase and ensures the preservation of homeostasis of the ocular surface. Meibum is a lipid-rich secret produced by fully differentiated meibocytes. Impaired insulin secretion, insulin resistance, absolute insulin deficiency, as well as hyperglycemia, potentiate the development of oxidative stress and a cascade of metabolic changes, leading to a change in the anatomical and functional state of the meibomian glands, which affects the qualitative and quantitative secretion. Cytological abnormalities, as well as the structure of the excretory ducts of the meibomian glands in patients with long-term diabetes mellitus, were established using the method of laser scanning microscopy. Using the method of mass spectrometry, it is possible to determine the patterns of changes in the chemical composition of meibum in patients with diabetes mellitus. The data obtained can become one of the criteria for predicting the course, reflect the degree of compensation and / or progression of diabetes mellitus.
About the Authors
T. N. SafonovaTat`yana N. Safonova, MD, PhD
Moscow
eLibrary SPIN: 5605-8484
E. S. Medvedeva
Russian Federation
Ekaterina S. Medvedeva, MD
7 26-ti Bakinskih komissarov street, 119571, Moscow
Researcher ID: AAW-4247-2021;
eLibrary SPIN: 1109-2409
References
1. IDF diabetes atlas, 9th edition. 2019. (In Russ.). Av. at: https://diabetesatlas.org/en. Link active on 18.08.2021.
2. Saran R, Li Y, Robinson B, et al. US Renal Data System 2014 Annual Data Report: Epidemiology of Kidney Disease in the United States [published correction appears in Am J Kidney Dis. 2015;66(3):545]. Am J Kidney Dis. 2015;66(S1):Svii-S305. doi: https://doi.org/10.1053/j.ajkd.2015.05.001
3. Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol. 2019;11(3):45-63.
4. Lascar N, Brown J, Pattison H, et al. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2018;6(1):69-80. doi: https://doi.org/10.1016/S2213-8587(17)30186-9
5. Butkowski EG, Jelinek HF. Hyperglycaemia, oxidative stress and inflammatory markers. Redox Rep. 2017;22(6):257-264. doi: https://doi.org/10.1080/13510002.2016.1215643
6. Collier B, Dossett LA, May AK, Diaz JJ. Glucose control and the inflammatory response. Nutr Clin Pract. 2008;23(1):3-15. doi: https://doi.org/10.1177/011542650802300103
7. Belalcazar LM, Haffner SM, Lang W, et al. Lifestyle intervention and/or statins for the reduction of C-reactive protein in type 2 diabetes: from the look AHEAD study. Obesity (Silver Spring). 2013;21(5):944-950. doi: https://doi.org/10.1002/oby.20431
8. Tatsch E, Bochi GV, Piva SJ, et al. Association between DNA strand breakage and oxidative, inflammatory and endothelial biomarkers in type 2 diabetes. Mutat Res. 2012;732(1-2):16-20. doi: https://doi.org/10.1016/j.mrfmmm.2012.01.004
9. Jesmin J, Rashid MS, Jamil H, et al. Gene regulatory network reveals oxidative stress as the underlying molecular mechanism of type 2 diabetes and hypertension. BMC Med Genomics. 2010;3:45. doi: https://doi.org/10.1186/1755-8794-3-45
10. Duncan BB, Schmidt MI, Cousin E, et al. The burden of diabetes and hyperglycemia in Brazil-past and present: findings from the Global Burden of Disease Study 2015. Diabetol Metab Syndr. 2017;9:18. doi: https://doi.org/10.1186/s13098-017-0216-2
11. Schmidt MI, Duncan BB, Sharrett AR, et al. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): a cohort study. Lancet. 1999;353(9165):1649-1652. doi: https://doi.org/10.1016/s0140-6736(99)01046-6
12. Lemieux I, Pascot A, Prud’homme D, et al. Elevated C-reactive protein: another component of the atherothrombotic profile of abdominal obesity. Arterioscler Thromb Vasc Biol. 2001;21(6):961-967. doi: https://doi.org/10.1161/01.atv.21.6.961
13. Chen L, Yuan L, Qian K, et al. Identification of Biomarkers Associated With Pathological Stage and Prognosis of Clear Cell Renal Cell Carcinoma by Co-expression Network Analysis. Front Physiol. 2018;9:399. doi: https://doi.org/10.3389/fphys.2018.00399
14. Boehm N, Riechardt AI, Wiegand M, et al. Proinflammatory cytokine profiling of tears from dry eye patients by means of antibody microarrays. Invest Ophthalmol Vis Sci. 2011;52(10):7725-7730. doi: https://doi.org/10.1167/iovs.11-7266
15. Li B, Sheng M, Xie L, et al. Tear proteomic analysis of patients with type 2 diabetes and dry eye syndrome by two-dimensional nano-liquid chromatography coupled with tandem mass spectrometry. Invest Ophthalmol Vis Sci. 2014;55(1):177-186. doi: https://doi.org/10.1167/iovs.13-12080
16. Calvo-Maroto AM, Perez-Cambrodí RJ, Albarán-Diego C, et al. Optical quality of the diabetic eye: a review. Eye (Lond). 2014;28(11):1271-1280. doi: https://doi.org/10.1038/eye.2014.176
17. Sağdık HM, Ugurbas SH, Can M, et al. Tear film osmolarity in patients with diabetes mellitus [published correction appears in Ophthalmic Res. 2013;50(2):134]. Ophthalmic Res. 2013;50(1):1-5. doi: https://doi.org/10.1159/000345770
18. Derakhshan A, Abrishami M, Khajedaluee M, et al. Comparison between Tear Film Osmolar Cocentration and Other Tear Film Function Parameters in Patients with Diabetes Mellitus. Korean J Ophthalmol. 2019;33(4):326-332. doi: https://doi.org/10.3341/kjo.2013.0146
19. Chhadva P, Goldhardt R, Galor A. Meibomian Gland Disease: The Role of Gland Dysfunction in Dry Eye Disease. Ophthalmology. 2017;124(11S):S20-S26. doi: https://doi.org/10.1016/j.ophtha.2017.05.031
20. Rabensteiner DF, Aminfar H, Boldin I, et al. The prevalence of meibomian gland dysfunction, tear film and ocular surface parameters in an Austrian dry eye clinic population. Acta Ophthalmol. 2018;96(6):e707-e711. doi: https://doi.org/10.1111/aos.13732
21. Shih KC, Lam KS, Tong L. A systematic review on the impact of diabetes mellitus on the ocular surface. Nutr Diabetes. 2017;7(3):e251. doi: https://doi.org/10.1038/nutd.2017.4
22. Najafi L, Malek M, Valojerdi AE, et al. Dry eye disease in type 2 diabetes mellitus; comparison of the tear osmolarity test with other common diagnostic tests: a diagnostic accuracy study using STARD standard. J Diabetes Metab Disord. 2015;14:39. doi: https://doi.org/10.1186/s40200-015-0157-y
23. Seifart U, Strempel I. Trockenes Auge und Diabetes mellitus [The dry eye and diabetes mellitus]. Ophthalmologe. 1994;91(2):235-239.
24. Shamsheer RP, Arunachalam C. A Clinical Study of Meibomian Gland Dysfunction in Patients with Diabetes. Middle East Afr J Ophthalmol. 2015;22(4):462-466. doi: https://doi.org/10.4103/0974-9233.167827
25. Yu T, Han XG, Gao Y, et al. Morphological and cytological changes of meibomian glands in patients with type 2 diabetes mellitus. Int J Ophthalmol. 2019;12(9):1415-1419. doi: https://doi.org/10.18240/ijo.2019.09.07
26. Figueroa-Ortiz LC, Jiménez Rodríguez E, García-Ben A, García-Campos J. Estudio de la función lagrimal y la superficie conjuntival en pacientes diabéticos [Study of tear function and the conjunctival surface in diabetic patients]. Arch Soc Esp Oftalmol. 2011;86(4):107-112. doi: https://doi.org/10.1016/j.oftal.2010.12.010
27. McCulley JP, Shine WE. Meibomian secretions in chronic blepharitis. Adv Exp Med Biol. 1998;438:319-326. doi: https://doi.org/10.1007/978-1-4615-5359-5_45
28. Beleczkaya IS. II Forum regional'nykh ekspertov po probleme sindroma «sukhogo» glaza. Moscow; 04.11.2017. (In Russ.).
29. Knop E, Knop N, Millar T, et al. The international workshop on meibomian gland dysfunction: report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Invest Ophthalmol Vis Sci. 2011;52(4):1938-1978. doi: https://doi.org/10.1167/iovs.10-6997c
30. Chung CW, Tigges M, Stone RA. Peptidergic innervation of the primate meibomian gland. Invest Ophthalmol Vis Sci. 1996;37(1):238-245.
31. Misra SL, Patel DV, McGhee CN, et al. Peripheral neuropathy and tear film dysfunction in type 1 diabetes mellitus. J Diabetes Res. 2014;2014:848659. doi: https://doi.org/10.1155/2014/848659
32. Song XJ, Li DQ, Farley W, et al. Neurturin-deficient mice develop dry eye and keratoconjunctivitis sicca. Invest Ophthalmol Vis Sci. 2003;44(10):4223-4229. doi: https://doi.org/10.1167/iovs.02-1319
33. Skilton MR, Moulin P, Sérusclat A, et al. A comparison of the NCEP-ATPIII, IDF and AHA/NHLBI metabolic syndrome definitions with relation to early carotid atherosclerosis in subjects with hypercholesterolemia or at risk of CVD: evidence for sex-specific differences. Atherosclerosis. 2007;190(2):416-422. doi: https://doi.org/10.1016/j.atherosclerosis.2006.02.019
34. Rocha EM, Wickham LA, da Silveira LA, et al. Identification of androgen receptor protein and 5alpha-reductase mRNA in human ocular tissues. Br J Ophthalmol. 2000;84(1):76-84. doi: https://doi.org/10.1136/bjo.84.1.76
35. Wickham LA, Gao J, Toda I, et al. Identification of androgen, estrogen and progesterone receptor mRNAs in the eye. Acta Ophthalmol Scand. 2000;78(2):146-153. doi: https://doi.org/10.1034/j.1600-0420.2000.078002146.x
36. Obrubov AS, Obrubov SA. Ophthalmological manifestations of pharmacotherapy: subtituent hormonal therapy in women. Russian ophthalmology of children. 2012;3:40-45. (In Russ.).
37. Esmaeli B, Harvey JT, Hewlett B. Immunohistochemical evidence for estrogen receptors in meibomian glands. Ophthalmology. 2000;107(1):180-184. doi: https://doi.org/10.1016/s0161-6420(99)00040-8
38. Lorenzi M, Cagliero E. Pathobiology of endothelial and other vascular cells in diabetes mellitus. Call for data. Diabetes. 1991;40(6):653-659. doi: https://doi.org/10.2337/diab.40.6.653
39. Maritim AC, Sanders RA, Watkins JB 3rd. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003;17(1):24-38. doi: https://doi.org/10.1002/jbt.10058
40. Sies H, Berndt C, Jones DP. Oxidative Stress. Annu Rev Biochem. 2017;86:715-748. doi: https://doi.org/10.1146/annurev-biochem-061516-045037
41. Balabolkin MI, Kreminskaya VM, Klebanova YM. A role of oxidative stress in the pathogenesis of diabetic nephropathy and the possibility of its correction with α-lipoic acid preparations. Problems of Endocrinology. 2005;51(3):22-32. (In Russ.). doi: https://doi.org/10.14341/probl200551322-32
42. Domingueti CP, Dusse LM, Carvalho MD, et al. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complications. 2016;30(4):738-745. doi: https://doi.org/10.1016/j.jdiacomp.2015.12.018
43. Walther G, Obert P, Dutheil F, et al. Metabolic syndrome individuals with and without type 2 diabetes mellitus present generalized vascular dysfunction: cross-sectional study. Arterioscler Thromb Vasc Biol. 2015;35(4):1022-1029. doi: https://doi.org/10.1161/ATVBAHA.114.304591
44. Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm. 2013;2013:152786. doi: https://doi.org/10.1155/2013/152786
45. Gasparotto J, Girardi CS, Somensi N, et al. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293(1):226-244. doi: https://doi.org/10.1074/jbc.M117.786756
46. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006;114(6):597-605. doi: https://doi.org/10.1161/CIRCULATIONAHA.106.621854
47. Safonova TN, Gladkova OV, Boev VI. Oxidative stress correction in the treatment of severe keratoconjunctivitis sicca in patients with Sjorgen’s syndrome. Vestn Oftalmol. 2019;135(1):59-66. (In Russ.). doi: https://doi.org/10.17116/oftalma201913501159
48. Wakamatsu TH, Dogru M, Matsumoto Y, et al. Evaluation of lipid oxidative stress status in Sjögren syndrome patients. Invest Ophthalmol Vis Sci. 2013;54(1):201-210. doi: https://doi.org/10.1167/iovs.12-10325
49. Macri A, Scanarotti C, Bassi AM, et al. Evaluation of oxidative stress levels in the conjunctival epithelium of patients with or without dry eye, and dry eye patients treated with preservative-free hyaluronic acid 0.15% and vitamin B12 eye drops. Graefes Arch Clin Exp Ophthalmol. 2015;253(3):425-430. doi: https://doi.org/10.1007/s00417-014-2853-6
50. Choi W, Lian C, Ying L, et al. Expression of Lipid Peroxidation Markers in the Tear Film and Ocular Surface of Patients with Non-Sjogren Syndrome: Potential Biomarkers for Dry Eye Disease. Curr Eye Res. 2016;41(9):1143-1149. doi: https://doi.org/10.3109/02713683.2015.1098707
51. Deng R, Hua X, Li J, et al. Oxidative stress markers induced by hyperosmolarity in primary human corneal epithelial cells. PLoS One. 2015;10(5):e0126561. doi: https://doi.org/10.1371/journal.pone.0126561
52. Li Y, Liu H, Zeng W, Wei J. Edaravone protects against hyperosmolarity-induced oxidative stress and apoptosis in primary human corneal epithelial cells. PLoS One. 2017;12(3):e0174437. doi: https://doi.org/10.1371/journal.pone.0174437
53. Zhou L, Beuerman RW, Chan CM, et al. Identification of tear fluid biomarkers in dry eye syndrome using iTRAQ quantitative proteomics. J Proteome Res. 2009;8(11):4889-4905. doi: https://doi.org/10.1021/pr900686s
54. Li B, Sheng M, Xie L, et al. Tear proteomic analysis of patients with type 2 diabetes and dry eye syndrome by two-dimensional nano-liquid chromatography coupled with tandem mass spectrometry. Invest Ophthalmol Vis Sci. 2014;55(1):177-186. doi: https://doi.org/10.1167/iovs.13-12080
55. Kim J, Kim CS, Sohn E, et al. Involvement of advanced glycation end products, oxidative stress and nuclear factor-kappaB in the development of diabetic keratopathy. Graefes Arch Clin Exp Ophthalmol. 2011;249(4):529-536. doi: https://doi.org/10.1007/s00417-010-1573-9
56. TS, Marmiĭ NV, Esipov DS, et al. 8-Okso-2’-dezoksiguanozin — biomarkyor okislitel`nogo stressa. Vestnik MITXT im. M.V. Lomonosova. 2014;9(5):3-10 (In Russ.).
57. Burnham JM, Sakhalkar M, Langford MP, et al. Diabetic and non-diabetic human cornea and tear γ-glutamyl transpeptidase activity. Clin Ophthalmol. 2013;7:99-107. doi: https://doi.org/10.2147/OPTH.S37546
Supplementary files
Review
For citations:
Safonova T.N., Medvedeva E.S. Dysfunction of the meibomian glands in patients with diabetes mellitus. Diabetes mellitus. 2022;25(2):186-191. (In Russ.) https://doi.org/10.14341/DM12798

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).