The Scientific Advisory board resolution: Implementation of intermittently scanned Continuous Glucose monitoring in clinical practice to improve glycemic control
https://doi.org/10.14341/DM12753
Abstract
The Scientific Advisory Board chaired by Academician of the Russian Academy of Sciences, Peterkova V.A. was held 26 of November in Moscow to discuss the possibilities of continuous glucose monitoring technology (CGM) implementation into routine clinical practice in Russia in order to improve glycemic control in patients with diabetes mellitus (DM).
The main aims for Advisory board were to determine the most significant indicators and parameters for CGM to be implemented in practice from a practical point of view of LMWH, necessary for implementation in clinical practice, for different patients groups with diabetes.
The following questions and topics were raised within the discussion: the importance of additional indicators beyond glycated hemoglobin (HbA1c) for glycemic control assessment in diabetes patients, CGM positioning in International and Russian clinical guidelines, the accuracy of CGM devises and approaches to its assessment, the role of education programs for diabetic patients, including trainings in correct use and data interpretation and analysis of CGM data obtained, clinical evidence analysis for CGM in randomized trials and real world evidence.
About the Authors
V. A. PeterkovaRussian Federation
Valentina A. Peterkova, MD, PhD, Professor; eLibrary SPIN: 4009-2463.
11 Dm. Ulyanova street, 117036 Moscow
Competing Interests:
принимал участие в научно-консультативном совете по применению технологии непрерывного мониторинга глюкозы с периодическим сканированием в достижении гликемического контроля, который проводился при поддержке компании Abbott, результаты которого легли в основу этой статьи
A. S. Ametov
Russian Federation
Alexander S. Ametov, MD, PhD, Professor.
Moscow
Competing Interests:
принимал участие в научно-консультативном совете по применению технологии непрерывного мониторинга глюкозы с периодическим сканированием в достижении гликемического контроля, который проводился при поддержке компании Abbott, результаты которого легли в основу этой статьи
A. Y. Mayorov
Russian Federation
Aleksander Y. Mayorov, MD, PhD; eLibrary SPIN: 4275-7779.
Moscow
Competing Interests:
принимал участие в научно-консультативном совете по применению технологии непрерывного мониторинга глюкозы с периодическим сканированием в достижении гликемического контроля, который проводился при поддержке компании Abbott, результаты которого легли в основу этой статьи
G. R. Galstyan
Russian Federation
Gagik R. Galstyan, MD, PhD, Professor; eLibrary SPIN: 9815-7509.
Moscow
Competing Interests:
принимал участие в научно-консультативном совете по применению технологии непрерывного мониторинга глюкозы с периодическим сканированием в достижении гликемического контроля, который проводился при поддержке компании Abbott, результаты которого легли в основу этой статьи
D. N. Laptev
Russian Federation
Dmitry N. Laptev, MD, PhD; eLibrary SPIN: 2419-4019.
Moscow
Competing Interests:
принимал участие в научно-консультативном совете по применению технологии непрерывного мониторинга глюкозы с периодическим сканированием в достижении гликемического контроля, который проводился при поддержке компании Abbott, результаты которого легли в основу этой статьи
N. A. Chernikova
Russian Federation
Natalya A. Chernikova, MD, PhD.
Moscow
Competing Interests:
принимал участие в научно-консультативном совете по применению технологии непрерывного мониторинга глюкозы с периодическим сканированием в достижении гликемического контроля, который проводился при поддержке компании Abbott, результаты которого легли в основу этой статьи
References
1. Battelino T, Danne T, Bergenstal RM, et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care. 2019;42(8):1593-1603. doi: https://doi.org/10.2337/dci19-0028
2. Monnier L, Colette C. Glycemic Variability: Should we and can we prevent it? Diabetes Care. 2008;31(2):S150-S154. doi: https://doi.org/10.2337/dc08-s241.
3. Rayman G. Glycaemic control, glucose variability and the Triangle of Diabetes Care. Br J Diabetes. 2016;16:3. doi: https://doi.org/10.15277/bjd.2016.070
4. Ametov AS, Chernikova NA, Demidova TYu. Glycemic variability as a therapeutic target in the treatment of patients with type 2 diabetes mellitus. Farmateka. 2016;5:8-13. (In Russ.).
5. Tiselko AV, Yarmolinskaya MI, Misharina EV. Evaluation of glycaemic profile variability as a basis for insulin therapy strategy in pregnant women with type 1 diabetes. Diabetes Mellitus. 2020;22(6):526-535. (In Russ.). doi: https://doi.org/10.14341/DM10214
6. Laptev DN. Relationship of hypoglycemia and glucose variability with autonomic dysfunction in children and adolescents with type 1 diabetes. Diabetes Mellitus. 2014;17(4):87-92. (In Russ.). doi: https://doi.org/10.14341/DM2014487-92
7. Beck RW, Bergenstal RM, Riddlesworth TD, et al. Validation of Time in Range as an Outcome Measure for Diabetes Clinical Trials. Diabetes Care. 2019;42(3):400-405. doi: https://doi.org/10.2337/dc18-1444
8. Lu J, Ma X, Zhou J, et al. Association of Time in Range, as Assessed by Continuous Glucose Monitoring, With Diabetic Retinopathy in Type 2 Diabetes. Diabetes Care. 2018;41(11):2370-2376. doi: https://doi.org/10.2337/dc18-1131
9. Mayeda L, Katz R, Ahmad I, et al. Glucose time in range and peripheral neuropathy in type 2 diabetes mellitus and chronic kidney disease. BMJ Open Diabetes Res Care. 2020;8(1):e000991. doi: https://doi.org/10.1136/bmjdrc-2019-000991
10. Bergenstal R, Hachmann-Nielsen E, Kvist K. Derived time-in-range is associated with MACE in type 2 diabetes: data from the DEVOTE trial. Presented at EASD. 2020. Oral Presentation. 159 p.
11. Danne T, Nimri R, Battelino T, et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care. 2017;40(12):1631-1640. doi: https://doi.org/10.2337/dc17-1600
12. Dedov II, Shestakova MV, Mayorov AYu, et al. Standards of specialized diabetes care. Diabetes Mellitus. 2019;22(S1):1-144 (In Russ.). doi: https://doi.org/10.14341/DM221S1
13. DiMeglio LA, Acerini CL, Codner E, et al. ISPAD Clinical Practice Consensus Guidelines 2018: Glycemic control targets and glucose monitoring for children, adolescents, and young adults with diabetes. Pediatr Diabetes. 2018;19:105-114. doi: https://doi.org/10.1111/pedi.12737
14. Clinical guidlines. Diabetes mellitus type 1 in adults. Diabetes Mellitus. 2020;23(S1):42-114. (In Russ.). doi: https://doi.org/10.14341/DM20201S
15. Clinical guidlines. Diabetes mellitus type 2 in adults. Diabetes Mellitus. 2020;23(S2):4-102. (In Russ.). doi: https://doi.org/10.14341/DM20202S
16. Clinical guidlines. Diabetes mellitus type 1 in childhood. Diabetes mellitus type 1 in adults. Diabetes Mellitus. 2020;23(S1):4-40. (In Russ.). doi: https://doi.org/10.14341/DM20201S
17. National Institute for Health and Care Excellence (NICE). FreeStyle Libre for glucose monitoring (MIB110). 2017, July. P. 1–20.
18. Cardoso H, et al. Consenso Nacional para a Utilização do Sistema de Monitorização Flash da Glicose National Consensus on the Use of the Glucose Flash Monitoring System CONSENSO NACIONAL. Rev. Port. Diabetes. 2018;13(4):143-153.
19. Freckmann G, Schlüter S, Heinemann L. Replacement of Blood Glucose Measurements by Measurements With Systems for Real-Time Continuous Glucose Monitoring (rtCGM) or CGM With Intermittent Scanning (iscCGM): A German View. J Diabetes Sci Technol. 2017;11(4):653-656. doi: https://doi.org/10.1177/1932296817721004
20. Kudva YC, Ahmann AJ, Bergenstal RM, et al. Approach to Using Trend Arrows in the FreeStyle Libre Flash Glucose Monitoring Systems in Adults. J Endocr Soc. 2018;2(12):1320-1337. doi: https://doi.org/10.1210/js.2018-00294
21. Ajjan RA, Cummings MH, Jennings P, et al. Accuracy of flash glucose monitoring and continuous glucose monitoring technologies: Implications for clinical practice. Diabetes Vasc Dis Res. 2018;15(3):175-184. doi: https://doi.org/10.1177/1479164118756240
22. Reiterer F, Polterauer P, Schoemaker M, et al. Significance and Reliability of MARD for the Accuracy of CGM Systems. J Diabetes Sci Technol. 2017;11(1):59-67. doi: https://doi.org/10.1177/1932296816662047
23. Parkes JL, Slatin SL, Pardo S, Ginsberg BH. A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose. Diabetes Care. 2000;23(8):1143-1148. doi: https://doi.org/10.2337/diacare.23.8.1143
24. Bailey T, Bode BW, Christiansen MP, et al. The Performance and Usability of a Factory-Calibrated Flash Glucose Monitoring System. Diabetes Technol Ther. 2015;17(11):787-794. doi: https://doi.org/10.1089/dia.2014.0378
25. Bolinder J, Antuna R, Geelhoed-Duijvestijn P, Kröger J, Weitgasser R. Novel glucose-sensing technology and hypoglycaemia in type 1 diabetes: a multicentre, non-masked, randomised controlled trial. Lancet. 2016;388(10057):2254-2263. doi: https://doi.org/10.1016/S0140-6736(16)31535-5
26. Yaron M, Roitman E, Aharon-Hananel G, et al. Effect of Flash Glucose Monitoring Technology on Glycemic Control and Treatment Satisfaction in Patients With Type 2 Diabetes. Diabetes Care. 2019;42(7):1178-1184. doi: https://doi.org/10.2337/dc18-0166
27. Evans M, Welsh Z, Ells S, Seibold A. The Impact of Flash Glucose Monitoring on Glycaemic Control as Measured by HbA1c: A Meta-analysis of Clinical Trials and Real-World Observational Studies. Diabetes Ther. 2020;11(1):83-95. doi: https://doi.org/10.1007/s13300-019-00720-0
28. Dunn TC, Xu Y, Hayter G, Ajjan RA. Real-world flash glucose monitoring patterns and associations between self-monitoring frequency and glycaemic measures: A European analysis of over 60 million glucose tests. Diabetes Res Clin Pract. 2018;137:37-46. doi: https://doi.org/10.1016/j.diabres.2017.12.015
29. Eeg-Olofsson K, Svensson A-M, Franzén S, et al. 74-LB: Sustainable HbA1c Decrease at 12 Months for Adults with Type 1 and Type 2 Diabetes Using the FreeStyle Libre System: A Study within the National Diabetes Register in Sweden. Diabetes. 2020;69(1):74-LB. doi: https://doi.org/10.2337/db20-74-LB.
30. Roussel R, Guerci B, Vicaut E, et al. 68-OR: Dramatic Drop in Ketoacidosis Rate after FreeStyle Libre System Initiation in Type 1 and Type 2 Diabetes in France, Especially in People with Low Self-Monitoring of Blood Glucose (SMBG): A Nationwide Study. Diabetes. 2020;69(1):68-OR. doi: https://doi.org/10.2337/db20-68-OR
31. Campbell FM, Murphy NP, Stewart C, et al. Outcomes of using flash glucose monitoring technology by children and young people with type 1 diabetes in a single arm study. Pediatr Diabetes. 2018;19(7):1294-1301. doi: https://doi.org/10.1111/pedi.12735
32. Messaaoui A, Tenoutasse S, Crenier L. Flash Glucose Monitoring Accepted in Daily Life of Children and Adolescents with Type 1 Diabetes and Reduction of Severe Hypoglycemia in Real-Life Use. Diabetes Technol Ther. 2019;21(6):329-335. doi: https://doi.org/10.1089/dia.2018.0339
Review
For citations:
Peterkova V.A., Ametov A.S., Mayorov A.Y., Galstyan G.R., Laptev D.N., Chernikova N.A. The Scientific Advisory board resolution: Implementation of intermittently scanned Continuous Glucose monitoring in clinical practice to improve glycemic control. Diabetes mellitus. 2021;24(2):185-192. (In Russ.) https://doi.org/10.14341/DM12753

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).