Preview

Diabetes mellitus

Advanced search

Role of Genetic and Environmental Factors in Determining the Response to Metformin

https://doi.org/10.14341/DM12744

Abstract

Metformin is one of the most commonly prescribed drugs for the treatment and prevention of type 2 diabetes mellitus (T2DM). Numerous evidence accumulates indicating that both genetic and environmental factors underlie adverse side effects of metformin, as well as individual differences in patient response to treatment The present review summarizes information on genetic factors and environmental modifiers determining patients’ individual response to metformin treatment. The data on the role of polymorphism of the most significant genes and protein products encoded by them both in the development of adverse effects and in determining the therapeutic response are summarized, and the place of metformin in the realization of the phenotypic effects of these genes is discussed.
Endogenous conditions and exogenous effects modifying the response to metformin are considered. Among them are factors that affect the functional state of the genome (the level of methylation of genes, one way or another associated with the response to metformin, etc.), reflecting the biological characteristics of the organism (gender, age), health level (the presence of concomitant diseases, the supply of biometals and vitamins), taking other medications, etc. Thus, there is a wide range of factors modifying the response to metformin, which, unlike genetic characteristics, are largely controllable. At the same time, both genetic and environmental factors may differ in significance in different ethno-territorial groups of the population. This information should be taken into account when developing a personalized approach to prescribing metformin for the treatment of type 2 diabetes, as well as when recommending its use for the treatment of other diseases.

About the Authors

А. N. Kucher
Research Institute of Medical Genetics, Tomsk National Research Medical Center
Russian Federation

Aksana N. Kucher, PhD in Biology, Professor

Researcher ID: A-7789-2014

Scopus Author ID: 7004507293

SPIN: 5251-2055

10 Ushaika river embankment, 634050 Tomsk

 


Competing Interests:

no



N. P. Babushkina
Research Institute of Medical Genetics, Tomsk National Research Medical Center
Russian Federation

Nadezhda P. Babushkina, PhD in Biology

Researcher ID: B-3106-2014

Scopus Author ID: 39961071300

SPIN: 4639-1490

Tomsk


Competing Interests:

no



References

1. Zhou K, Yee SW, Seiser EL, et al. Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat Genet. 2016;48(9):1055-1059. doi: https://doi.org/10.1038/ng.3632

2. Дедов И.И., Шестакова М.В., Викулова О.К., и др. Атлас регистра сахарного диабета Российской Федерации. Статус 2018 г. // Сахарный диабет. — 2019. — T. 22. — № S2-2. — C. 4-61. [Dedov II, Shestakova MV, Vikulova OK, et al. Atlas of Diabetes Register in Russian Federation, status 2018. Diabetes Mellitus. 2019;22(2S):4-61. (In Russ.)]. doi: https://doi.org/10.14341/DM20192S

3. Ametov АS, Demidova TY, Kochergina II. The efficacy of metformin in the treatment of type 2 diabetes. Med Counc. 2016;284(3):30-37. (In Russ). doi: https://doi.org/10.21518/2079-701X-2016-3-30-37

4. Inzucchi SE. Is It Time to Change the Type 2 Diabetes Treatment Paradigm? No! Metformin Should Remain the Foundation Therapy for Type 2 Diabetes. Diabetes Care. 2017;40(8):1128-1132. doi: https://doi.org/10.2337/dc16-2372

5. Dedov II, Shestakova MV, Majorov AY, et al. Diabetes mellitus type 2 in adults. Diabetes Mellitus. 2020;23(S2):4-102. (In Russ.). doi: https://doi.org/10.14341/DM20202S

6. Huang Y, Sun J, Wang X, et al. Asymptomatic chronic gastritis decreases metformin tolerance in patients with type 2 diabetes. J Clin Pharm Ther. 2015;40(4):461-465. doi: https://doi.org/10.1111/jcpt.12290

7. García-Calzón S, Perfilyev A, Männistö V, et al. Diabetes medication associates with DNA methylation of metformin transporter genes in the human liver. Clin Epigenetics. 2017;9:102. doi: https://doi.org/10.1186/s13148-017-0400-0

8. Dawed AY, Zhou K, van Leeuwen N, et al. Variation in the Plasma Membrane Monoamine Transporter (PMAT) (Encoded by SLC29A4) and Organic Cation Transporter 1 (OCT1) (Encoded by SLC22A1) and Gastrointestinal Intolerance to Metformin in Type 2 Diabetes: An IMI DIRECT Study. Diabetes Care. 2019;42(6):1027-1033. doi: https://doi.org/10.2337/dc18-2182

9. Madjanov IV, Diarova AA, Voronina MG, Dolgova MV. On the issue of adverse reactions when taking metformin. Klinicheskaja medicina i farmakologija. 2019;5(2):16-19. (In Russ.). doi: https://doi.org/10.12737/article_5d6620b2380101.83928732

10. Ustinova M, Silamikelis I, Kalnina I, et al. Metformin strongly affects transcriptome of peripheral blood cells in healthy individuals. PLoS One. 2019;14(11):e0224835. doi: https://doi.org/10.1371/journal.pone.0224835

11. Blumenberg A, Benabbas R, Sinert R, et al. Do Patients Die with or from Metformin-Associated Lactic Acidosis (MALA)? Systematic Review and Meta-analysis of pH and Lactate as Predictors of Mortality in MALA. J Med Toxicol. 2020;16(2):222-229. doi: https://doi.org/10.1007/s13181-019-00755-6

12. Hansen CS, Lundby-Christiansen L, Tarnow L, et al. Metformin may adversely affect orthostatic blood pressure recovery in patients with type 2 diabetes: substudy from the placebo-controlled Copenhagen Insulin and Metformin Therapy (CIMT) trial. Cardiovasc Diabetol. 2020;19(1):150. doi: https://doi.org/10.1186/s12933-020-01131-3

13. Schädle P, Tschritter O, Kellerer M. Metformin Associated Lactic Acidosis in Clinical Practice — A Case Series. Exp Clin Endocrinol Diabetes. 2020. doi: https://doi.org/10.1055/a-1149-9030.

14. Sendil S, Yarlagadda K, Lawal H, et al. Metformin Associated Lactic Acidosis in the Intensive Care Unit: A Rare Condition Mimicking Sepsis. Cureus. 2020;12(7):e9119. doi: https://doi.org/10.7759/cureus.9119

15. Shivaprasad C, Gautham K, Ramdas B, et al. Metformin Usage Index and assessment of vitamin B12 deficiency among metformin and non-metformin users with type 2 diabetes mellitus. Acta Diabetol. 2020;57(9):1073-1080. doi: https://doi.org/10.1007/s00592-020-01526-4

16. Theobald J, Schneider J, Cheema N, DesLauriers C. Time to development of metformin-associated lactic acidosis. Clin Toxicol (Phila). 2020;58(7):758-762. doi: https://doi.org/10.1080/15563650.2019.1686514

17. Cook MN, Girman CJ, Stein PP, Alexander CM. Initial monotherapy with either metformin or sulphonylureas often fails to achieve or maintain current glycaemic goals in patients with Type 2 diabetes in UK primary care. Diabet Med. 2007;24(4):350-8. doi: https://doi.org/10.1111/j.1464-5491.2007.02078.x

18. Rashid M, Shahzad M, Mahmood S, Khan K. Variability in the therapeutic response of Metformin treatment in patients with type 2 diabetes mellitus. Pak J Med Sci. 2019;35(1):71-76. doi: https://doi.org/10.12669/pjms.35.1.100.

19. Zhou K, Donnelly L, Yang J, et al. Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis. Lancet Diabetes Endocrinol. 2014;2(6):481-487. doi: https://doi.org/10.1016/S2213-8587(14)70050-6.

20. Biryukova EV, Morozova IA. Glucophage Long – an Effective and Safe Sugar-Lowering Drug for a LongTerm Administration. Jeffektivnaja farmakoterapija. 2015;28:14-23. (In Russ.).

21. Sung CT, Chao T, Lee A, et al. Oral Metformin for Treating Dermatological Diseases: A Systematic Review. J Drugs Dermatol. 2020;19(8):713-720. doi: https://doi.org/10.36849/JDD.2020.4874.

22. Dludla PV, Nkambule BB, Mazibuko-Mbeje SE, et al. Adipokines as a therapeutic target by metformin to improve metabolic function: A systematic review of randomized controlled trials. Pharmacol Res. 2021;163:105219. doi: https://doi.org/10.1016/j.phrs.2020.105219

23. Lv Z, Guo Y. Metformin and Its Benefits for Various Diseases. Front Endocrinol (Lausanne). 2020;11:191. doi: https://doi.org/10.3389/fendo.2020.00191

24. Sadeghi A, Mousavi SM, Mokhtari T, et al. Metformin Therapy Reduces Obesity Indices in Children and Adolescents: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Child Obes. 2020;16(3):174-191. doi: https://doi.org/10.1089/chi.2019.0040

25. Zhang QQ, Li WS, Liu Z, et al. Metformin therapy and cognitive dysfunction in patients with type 2 diabetes: A meta-analysis and systematic review. Medicine (Baltimore). 2020;99(10):e19378. doi: https://doi.org/10.1097/MD.0000000000019378.

26. Fang J, Yang J, Wu X, et al. Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7. Aging Cell. 2018;17(4):e12765. doi: https://doi.org/10.1111/acel.12765

27. Meshkani SE, Mahdian D, Abbaszadeh-Goudarzi K, et al. Metformin as a protective agent against natural or chemical toxicities: a comprehensive review on drug repositioning. J Endocrinol Invest. 2020;43(1):1-19. doi: https://doi.org/10.1007/s40618-019-01060-3

28. The NHGRI-EBI Catalog of human genome-wide association studies [Internet]. [cited 12.2020] Available from: https://www.ebi.ac.uk/gwas

29. UniProt [Internet]. Available from: https://www.uniprot.org [cited 10.2020]

30. Ensembl [Internet]. Available from: https://www.ensembl.org/. [cited 10.2020]

31. GTExPortal [Internet]. Available from: https://gtexportal.org/ [cited 10.2020]

32. OMIM — Online Mendelian Inheritance in Man [Internet]. Available from: https://www.omim.org/ [cited 12.2020]

33. DRUGBANK. [Internet]. URL: https://go.drugbank.com/ [cited 12.2020]

34. PharmGKB [Internet]. Available from: https://www.pharmgkb.org/chemical/PA450395/variantAnnotation [cited 10.2020]

35. Jablonski KA, McAteer JB, de Bakker PI, et al. Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the diabetes prevention program. Diabetes. 2010;59(10):2672-2681. doi: https://doi.org/10.2337/db10-0543.

36. Al-Eitan LN, Almomani BA, Nassar AM, et al. Metformin Pharmacogenetics: Effects of SLC22A1, SLC22A2, and SLC22A3 Polymorphisms on Glycemic Control and HbA1c Levels. J Pers Med. 2019;9(1):17. doi: https://doi.org/10.3390/jpm9010017

37. Reséndiz-Abarca CA, Flores-Alfaro E, Suárez-Sánchez F, et al. Altered Glycemic Control Associated With Polymorphisms in the SLC22A1 (OCT1) Gene in a Mexican Population With Type 2 Diabetes Mellitus Treated With Metformin: A Cohort Study. J Clin Pharmacol. 2019;59(10):1384-1390. doi: https://doi.org/10.1002/jcph.1425

38. Chan P, Shao L, Tomlinson B, et al. Metformin transporter pharmacogenomics: insights into drug disposition-where are we now? Expert Opin Drug Metab Toxicol. 2018;14(11):1149-1159. doi: https://doi.org/10.1080/17425255.2018.1541981

39. Srinivasan S, Yee SW, Giacomini KM. Pharmacogenetics of Antidiabetic Drugs. Adv Pharmacol. 2018;83:361-389. doi: https://doi.org/10.1016/bs.apha.2018.04.005

40. Liang H, Xu W, Zhou L, et al. Differential increments of basal glucagon-like-1 peptide concentration among SLC47A1 rs2289669 genotypes were associated with inter-individual variability in glycaemic response to metformin in Chinese people with newly diagnosed Type 2 diabetes. Diabet Med. 2017;34(7):987-992. doi: https://doi.org/10.1111/dme.13351

41. Wu K, Li X, Xu Y, et al. SLC22A1 rs622342 Polymorphism Predicts Insulin Resistance Improvement in Patients with Type 2 Diabetes Mellitus Treated with Metformin: A CrossSectional Study. Int J Endocrinol. 2020;2020:2975898. doi: https://doi.org/10.1155/2020/2975898

42. Naja K, El Shamieh S, Fakhoury R. rs622342A>C in SLC22A1 is associated with metformin pharmacokinetics and glycemic response. Drug Metab Pharmacokinet. 2020;35(1):160-164. doi: https://doi.org/10.1016/j.dmpk.2019.10.007

43. Marta M, Sánchez-Pozos K, Jaimes-Santoyo J, et al. Pharmacogenetic Evaluation of Metformin and Sulphonylurea Response in Mexican Mestizos with Type 2 Diabetes. Curr Drug Metab. 2020;21(4):291-300. doi: https://doi.org/10.2174/1389200221666200514125443

44. Zhou Y, Ye W, Wang Y, et al. Genetic variants of OCT1 influence glycemic response to metformin in Han Chinese patients with type-2 diabetes mellitus in Shanghai. Int J Clin Exp Pathol. 2015;8(8):9533-9542

45. Chen L, Takizawa M, Chen E, et al. Genetic polymorphisms in organic cation transporter 1 (OCT1) in Chinese and Japanese populations exhibit altered function. J Pharmacol Exp Ther. 2010;335(1):42-50. doi: https://doi.org/10.1124/jpet.110.170159

46. López-Bermejo A, Díaz M, Morán E, et al. A single nucleotide polymorphism in STK11 influences insulin sensitivity and metformin efficacy in hyperinsulinemic girls with androgen excess. Diabetes Care. 2010;33(7):1544-1548. doi: https://doi.org/10.2337/dc09-1750

47. Pollin TI, Jablonski KA, McAteer JB, et al. Diabetes Prevention Program Research Group. Triglyceride response to an intensive lifestyle intervention is enhanced in carriers of the GCKR Pro446Leu polymorphism. J Clin Endocrinol Metab. 2011;96(7):1142-1147. doi: https://doi.org/10.1210/jc.2010-2324

48. Chen EC, Liang X, Yee SW, et al. Targeted disruption of organic cation transporter 3 attenuates the pharmacologic response to metformin. Mol Pharmacol. 2015;88(1):75-83. doi: https://doi.org/10.1124/mol.114.096776.

49. Zaharenko L, Kalnina I, Geldnere K, et al. Single nucleotide polymorphisms in the intergenic region between metformin transporter OCT2 and OCT3 coding genes are associated with short-term response to metformin monotherapy in type 2 diabetes mellitus patients. Eur J Endocrinol. 2016;175(6):531-540. doi: https://doi.org/10.1530/EJE-16-0347

50. Billings LK, Jablonski KA, Warner AS, et al. Variation in Maturity-Onset Diabetes of the Young Genes Influence Response to Interventions for Diabetes Prevention. J Clin Endocrinol Metab. 2017;102(8):2678-2689. doi: https://doi.org/10.1210/jc.2016-3429

51. Prudente S, Di Paola R, Pezzilli S, et al. Pharmacogenetics of oral antidiabetes drugs: evidence for diverse signals at the IRS1 locus. Pharmacogenomics J. 2018;18(3):431-435. doi: https://doi.org/10.1038/tpj.2017.32

52. Mannino GC, Andreozzi F, Sesti G. Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine. Diabetes Metab Res Rev. 2019;35(3):3109. doi: https://doi.org/10.1002/dmrr.3109

53. Moeez S, Riaz S, Masood N, et al. Evaluation of the rs3088442 G>A SLC22A3 Gene Polymorphism and the Role of microRNA 147 in Groups of Adult Pakistani Populations With Type 2 Diabetes in Response to Metformin. Can J Diabetes. 2019;43(2):128-135. doi: https://doi.org/10.1016/j.jcjd.2018.07.001

54. Xhakaza L, Abrahams-October Z, Pearce B, et al. Evaluation of the suitability of 19 pharmacogenomics biomarkers for individualized metformin therapy for type 2 diabetes patients. Drug Metab Pers Ther. 2020. doi: https://doi.org/10.1515/dmdi-2020-0111

55. Zhou M, Xia L, Wang J. Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab Dispos. 2007;35(10):1956-1562. doi: https://doi.org/10.1124/dmd.107.015495

56. Han TK, Proctor WR, Costales CL, et al. Four cationselective transporters contribute to apical uptake and accumulation of metformin in Caco-2 cell monolayers. J Pharmacol Exp Ther. 2015;352(3):519-528. doi: https://doi.org/10.1124/jpet.114.220350

57. Liang X, Giacomini KM. Transporters Involved in Metformin Pharmacokinetics and Treatment Response. J Pharm Sci. 2017;106(9):2245-2250. doi: https://doi.org/10.1016/j.xphs.2017.04.078

58. Arner P, Kulyte A, Batchelor K, et al. Mapping of biguanide transporters in human fat cells and their impact on lipolysis. Diabetes Obes Metab. 2018;20(10):2416-2425. doi: https://doi.org/10.1111/dom.13395

59. Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108(8):1167-1174. doi: https://doi.org/10.1172/JCI13505.

60. Hardie DG. AMPK: a target for drugs and natural products with effects on both diabetes and cancer. Diabetes. 2013;62(7):2164-2172. doi: https://doi.org/10.2337/db13-0368

61. Cao J, Meng S, Chang E, et al. Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK). J Biol Chem. 2014;289(30):20435-20446. doi: https://doi.org/10.1074/jbc.M114.567271

62. Meng S, Cao J, He Q, et al. Metformin activates AMPactivated protein kinase by promoting formation of the αβγ heterotrimeric complex. J Biol Chem. 2015;290(6):3793-3802. doi: https://doi.org/10.1074/jbc.M114.604421

63. Ahlin G, Chen L, Lazorova L, et al. Genotype-dependent effects of inhibitors of the organic cation transporter, OCT1: predictions of metformin interactions. Pharmacogenomics J. 2011;11(6):400-411. doi: https://doi.org/10.1038/tpj.2010.54

64. Mofo Mato EP, Guewo-Fokeng M, Essop MF, Owira PMO. Genetic polymorphisms of organic cation transporter 1 (OCT1) and responses to metformin therapy in individuals with type 2 diabetes: A systematic review. Medicine (Baltimore). 2018;97(27):e11349. doi: https://doi.org/10.1097/MD.0000000000011349

65. Schaller L, Lauschke VM. The genetic landscape of the human solute carrier (SLC) transporter superfamily. Hum Genet. 2019;138(11- 12):1359-1377. doi: https://doi.org/10.1007/s00439-019-02081-x

66. Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet. 2008;40(6):695-701. doi: https://doi.org/10.1038/ng.f.136

67. Elbere I, Silamikelis I, Ustinova M, et al. Significantly altered peripheral blood cell DNA methylation profile as a result of immediate effect of metformin use in healthy individuals. Clin Epigenetics. 2018;10(1):156. doi: https://doi.org/10.1186/s13148-018-0593-x

68. He J, Wang K, Zheng N, et al. Metformin suppressed the proliferation of LoVo cells and induced a time-dependent metabolic and transcriptional alteration. Sci Rep. 2015;5:17423. doi: https://doi.org/10.1038/srep17423

69. Luizon MR, Eckalbar WL, Wang Y, et al. Genomic Characterization of Metformin Hepatic Response. PLoS Genet. 2016;12(11):e1006449. doi: https://doi.org/10.1371/journal.pgen.1006449

70. Padilla J, Thorne PK, Martin JS, et al. Transcriptomic effects of metformin in skeletal muscle arteries of obese insulinresistant rats. Exp Biol Med (Maywood). 2017;242(6):617-624. doi: https://doi.org/10.1177/1535370216689825

71. Weijers RNM, Bekedam DJ. The Metformin Paradox. Curr Diabetes Rev. 2020;16(2):143-147. doi: https://doi.org/10.2174/1573399814666181119145750

72. Schernthaner G, Schernthaner GH. The right place for metformin today. Diabetes Res Clin Pract. 2020;159:107946. doi: https://doi.org/10.1016/j.diabres.2019.107946

73. Schweighofer N, Genser B, Maerz W, et al. Intronic Variants in OCT1 are Associated with All-Cause and Cardiovascular Mortality in Metformin Users with Type 2 Diabetes. Diabetes Metab Syndr Obes. 2020;13:2069-2080. doi: https://doi.org/10.2147/DMSO.S235663

74. Unosson J, Wågsäter D, Bjarnegård N, et al. Metformin Prescription Associated with Reduced Abdominal Aortic Aneurysm Growth Rate and Reduced Chemokine Expression in a Swedish Cohort. Ann Vasc Surg. 2021;70:425-433. doi: https://doi.org/10.1016/j.avsg.2020.06.039

75. Zhang K, Yang W, Dai H, Deng Z. Cardiovascular risk following metformin treatment in patients with type 2 diabetes mellitus: Results from meta-analysis. Diabetes Res Clin Pract. 2020;160:108001. doi: https://doi.org/10.1016/j.diabres.2020.108001

76. Shoemaker AH, Chung ST, Fleischman A; Pediatric Endocrine Society Obesity Special Interest Group. Trends in pediatric obesity management, a survey from the Pediatric Endocrine Society Obesity Committee. J Pediatr Endocrinol Metab. 2020;33(4):469-472. doi: https://doi.org/10.1515/jpem-2019-0546.

77. Shestakova MV, Vikulova OK, Isakov MА, Dedov II. Diabetes and COVID-19: analysis of the clinical outcomes according to the data of the russian diabetes registry. Problems of Endocrinology. 2020;66(1):35-46. (In Russ.). doi: https://doi.org/10.14341/probl12458

78. Shestakova MV, Mokrysheva NG, Dedov II. Course and treatment of diabetes mellitus in the context of COVID-19. Diabetes Mellitus. 2020;23(2):132-139. (In Russ.). doi: https://doi.org/10.14341/DM12418

79. Gao Y, Liu T, Zhong W, et al. Risk of Metformin in Patients With Type 2 Diabetes With COVID‐19: A Preliminary Retrospective Report. Clin Transl Sci. 2020;13(6):1055-1059. doi: https://doi.org/10.1111/cts.12897

80. García-Calzón S, Perfilyev A, Martinell M, et al. Epigenetic markers associated with metformin response and intolerance in drugnaïve patients with type 2 diabetes. Sci Transl Med. 2020;12(561). doi: https://doi.org/10.1126/scitranslmed.aaz1803

81. Miyan Z, Waris N; MIBD. Association of vitamin B12 deficiency in people with type 2 diabetes on metformin and without metformin: a multicenter study, Karachi, Pakistan. BMJ Open Diabetes Res Care. 2020;8(1):e001151. doi: https://doi.org/10.1136/bmjdrc-2019-001151

82. Wakeman M, Archer DT. Metformin and Micronutrient Status in Type 2 Diabetes: Does Polypharmacy Involving Acid-Suppressing Medications Affect Vitamin B12 Levels? Diabetes Metab Syndr Obes. 2020;13:2093-2108. doi: https://doi.org/10.2147/DMSO.S237454.

83. Logie L, Harthill J, Patel K, et al. Cellular responses to the metalbinding properties of metformin. Diabetes. 2012;61(6):1423-1433. doi: https://doi.org/10.2337/db11-0961

84. Chen Y, Wu Y, Yang Y, et al. Transcriptomic and proteomic analysis of potential therapeutic target genes in the liver of metformin treated Sprague Dawley rats with type 2 diabetes mellitus. Int J Mol Med. 2018;41(6):3327-3341. doi: https://doi.org/10.3892/ijmm.2018.3535

85. Kaur B, Henry J. Micronutrient status in type 2 diabetes: a review. Adv Food Nutr Res. 2014;71:55-100. doi: https://doi.org/10.1016/B978-0-12-800270-4.00002-X

86. Siddiqui K, Bawazeer N, Scaria Joy S. Variation in Macro and Trace Elements in Progression of Type 2 Diabetes. Sci World J. 2014;2014:1-9. doi: https://doi.org/10.1155/2014/461591

87. Krysiak R, Kowalcze K, Okopień B. The impact of combination therapy with metformin and exogenous vitamin D on hypothalamic‐pituitary‐thyroid axis activity in women with autoimmune thyroiditis and high‐normal thyrotropin levels. J Clin Pharm Ther. 2020;45(6):1382-1389. doi: https://doi.org/10.1111/jcpt.13233

88. Kanti G, Anadol-Schmitz E, Bobrov P, et al. Vitamin B12 and Folate Concentrations in Recent-onset Type 2 Diabetes and the Effect of Metformin Treatment. J Clin Endocrinol Metab. 2020;105(6):2222-2231. doi: https://doi.org/10.1210/clinem/dgaa150

89. Morgante G, Massaro MG, Scolaro V, et al. Metformin doses and body mass index: clinical outcomes in insulin resistant polycystic ovary syndrome women. Eur Rev Med Pharmacol Sci. 2020;24(15):8136-8142. doi: https://doi.org/10.26355/eurrev_202008_22500

90. Wu H, Esteve E, Tremaroli V, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23(7):850-858. doi: https://doi.org/10.1038/nm.4345

91. Nakajima H, Takewaki F, Hashimoto Y, et al. The Effects of Metformin on the Gut Microbiota of Patients with Type 2 Diabetes: A TwoCenter, Quasi-Experimental Study. Life (Basel). 2020;10(9):195. doi: https://doi.org/10.3390/life10090195

92. Vallianou NG, Stratigou T, Tsagarakis S. Metformin and gut microbiota: their interactions and their impact on diabetes. Hormones (Athens). 2019;18(2):141-144. doi: https://doi.org/10.1007/s42000-019-00093-w

93. Koh A, Manneras-Holm L, Yunn NO, et al. Microbial Imidazole Propionate Affects Responses to Metformin through p38γDependent Inhibitory AMPK Phosphorylation. Cell Metab. 2020;32(4):643-653. doi: https://doi.org/10.1016/j.cmet.2020.07.012


Supplementary files

Review

For citations:


Kucher А.N., Babushkina N.P. Role of Genetic and Environmental Factors in Determining the Response to Metformin. Diabetes mellitus. 2021;24(6):571-582. (In Russ.) https://doi.org/10.14341/DM12744

Views: 2149


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)