Preview

Diabetes mellitus

Advanced search

Potential risk factors for diabetes mellitus type 1

https://doi.org/10.14341/DM12573

Abstract

Diabetes mellitus type 1 (T1D) develops as a result of the interaction of genetic and environmental factors. Genetic predisposition to T1D turns into clinical reality only in half of hereditary cases, which indirectly indicates the importance of external factors, the significance of which is periodically reviewed. Retrospective and prospective clinical foreign and national studies were included. PubMed, Medline and eLibrary were searched. Modern ideas about the possible impact of the main prenatal and postnatal environmental factors on the development of autoimmune response against insulin-producing islet cells and T1D were discussed. The risk of developing type 1 diabetes is determined by the complex interaction of environmental factors and genetic predisposition. The mechanisms of their influence remain rather unknown. Further research is needed to determine strategies of primary and secondary prevention of T1D.

About the Authors

K. G. Korneva
Privolzhsky Research Medical University
Russian Federation

Kseniya G. Korneva, MD, PhD, associate professor

10/1, Minin and Pozharsky square, 603005 Nizhny Novgorod

eLibrary SPIN: 5945-3266



L. G. Strongin
Privolzhsky Research Medical University
Russian Federation

Leonid G. Strongin, MD, PhD, Professor

Nizhny Novgorod

eLibrary SPIN: 9641-8130



K. Yu. Nazarova
Privolzhsky Research Medical University

Kseniya Yu. Nazarova, clinical resident

Nizhny Novgorod



V. E. Zagainov
Privolzhsky Research Medical University

Vladimir E. Zagainov, MD, PhD, associate professor

Nizhny Novgorod

eLibrary SPIN: 6477-0291



References

1. Dedov II, Shestakova MV, Mayorov AYu, et al. Standards of specialized diabetes care. Diabetes Mellitus. 2019;22(S1):1-144. (In Russ.). doi: https://doi.org/10.14341/DM221S1

2. Titovich EV, Kuraeva TL, Ivanova ON., et al. The Prediction of Type 1 Diabetes in discordant and concordant families: 16 years of follow-up. Focus on the future. Diabetes mellitus. 2014;17(3):83-89. (In Russ.). doi: https://doi.org/10.14341/DM2014383-89

3. Hermann R, Knip M, Veijola R, et al. Temporal changes in the frequencies of HLA genotypes in patients with Type 1 diabetes — indication of an increased environmental pressure? Diabetologia. 2003;46(3):420-425. doi: https://doi.org/10.1007/s00125-003-1045-4

4. Fourlanos S, Harrison LC, Colman PG. The accelerator hypothesis and increasing incidence of type 1 diabetes. Curr Opin Endocrinol Diabetes Obes. 2008;15(4):321-325. doi: https://doi.org/10.1097/MED.0b013e3283073a5a

5. Patterson CC, Gyürüs E, Rosenbauer J, et al. Trends in childhood type 1 diabetes incidence in Europe during 1989–2008: evidence of non-uniformity over time in rates of increase. Diabetologia. 2012;55(8):2142-2147. doi: https://doi.org/10.1007/s00125-012-2571-8

6. Harjutsalo V, Sund R, Knip M, Groop P-H. Incidence of Type 1 Diabetes in Finland. JAMA. 2013;310(4):427-428. doi: https://doi.org/10.1001/jama.2013.8399

7. Oilinki T, Otonkoski T, Ilonen J, et al. Prevalence and characteristics of diabetes among Somali children and adolescents living in Helsinki, Finland. Pediatr Diabetes. 2012;13(2):176-180. doi: https://doi.org/10.1111/j.1399-5448.2011.00783.x

8. Viskari H, Knip M, Tauriainen S, et al. Maternal Enterovirus Infection as a Risk Factor for Type 1 Diabetes in the Exposed Offspring. Diabetes Care. 2012;35(6):1328-1332. doi: https://doi.org/10.2337/dc11-2389

9. Allen DW, Kim KW, Rawlinson WD, Craig ME. Maternal virus infections in pregnancy and type 1 diabetes in their offspring: Systematic review and meta-analysis of observational studies. Rev Med Virol. 2018;28(3):e1974. doi: https://doi.org/10.1002/rmv.1974

10. Rasmussen T, Stene LC, Samuelsen SO, et al. Maternal BMI Before Pregnancy, Maternal Weight Gain During Pregnancy, and Risk of Persistent Positivity for Multiple Diabetes-Associated Autoantibodies in Children With the High-Risk HLA Genotype. Diabetes Care. 2009;32(10):1904-1906. doi: https://doi.org/10.2337/dc09-0663

11. Arkkola T, Kautiainen S, Takkinen H-M, et al. Relationship of maternal weight status and weight gain rate during pregnancy to the development of advanced beta cell autoimmunity in the offspring: a prospective birth cohort study. Pediatr Diabetes. 2011;12(5):478-484. doi: https://doi.org/10.1111/j.1399-5448.2010.00703.x

12. Virk J, Li J, Vestergaard M, et al. Early Life Disease Programming during the Preconception and Prenatal Period: Making the Link between Stressful Life Events and Type-1 Diabetes. PLoS One. 2010;5(7):e11523. doi: https://doi.org/10.1371/journal.pone.0011523

13. Cho CE, Norman M. Cesarean section and development of the immune system in the offspring. Am J Obstet Gynecol. 2013;208(4):249-254. doi: https://doi.org/10.1016/j.ajog.2012.08.009

14. Cardwell CR, Stene LC, Joner G, et al. Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetologia. 2008;51(5):726-735. doi: https://doi.org/10.1007/s00125-008-0941-z

15. Bonifacio E, Warncke K, Winkler C, et al. Cesarean Section and Interferon-Induced Helicase Gene Polymorphisms Combine to Increase Childhood Type 1 Diabetes Risk. Diabetes. 2011;60(12):3300-3306. doi: https://doi.org/10.2337/db11-0729

16. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222-227. doi: https://doi.org/10.1038/nature11053

17. Yassour M, Vatanen T, Siljander H, et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med. 2016;8(343). doi: https://doi.org/10.1126/scitranslmed.aad0917

18. Luopajärvi K, Nieminen JK, Ilonen J, et al. Expansion of CD4+CD25+FOXP3+ regulatory T cells in infants of mothers with type 1 diabetes. Pediatr Diabetes. 2012;13(5):400-407. doi: https://doi.org/10.1111/j.1399-5448.2012.00852.x

19. Stene LC, Ulriksen J, Magnus P, Joner G. Use of cod liver oil during pregnancy associated with lower risk of Type I diabetes in the offspring. Diabetologia. 2000;43(9):1093-1098. doi: https://doi.org/10.1007/s001250051499

20. Marjamäki L, Niinistö S, Kenward MG, et al. Maternal intake of vitamin D during pregnancy and risk of advanced beta cell autoimmunity and type 1 diabetes in offspring. Diabetologia. 2010;53(8):1599-1607. doi: https://doi.org/10.1007/s00125-010-1734-8

21. Sørensen IM, Joner G, Jenum PA, et al. Maternal Serum Levels of 25-Hydroxy-Vitamin D During Pregnancy and Risk of Type 1 Diabetes in the Offspring. Diabetes. 2012;61(1):175-178. doi: https://doi.org/10.2337/db11-0875

22. Miettinen ME, Reinert L, Kinnunen L, et al. Serum 25-hydroxyvitamin D level during early pregnancy and type 1 diabetes risk in the offspring. Diabetologia. 2012;55(5):1291-1294. doi: https://doi.org/10.1007/s00125-012-2458-8

23. Sørensen IM, Joner G, Jenum PA, et al. Serum long chain n-3 fatty acids (EPA and DHA) in the pregnant mother are independent of risk of type 1 diabetes in the offspring. Diabetes Metab Res Rev. 2012;28(5):431-438. doi: https://doi.org/10.1002/dmrr.2293

24. Silvis K, Aronsson CA, Liu X, et al. Maternal dietary supplement use and development of islet autoimmunity in the offspring: TEDDY study. Pediatr Diabetes. 2019;20(1):86-92. doi: https://doi.org/10.1111/pedi.12794

25. Stene LC, Gale EAM. The prenatal environment and type 1 diabetes. Diabetologia. 2013;56(9):1888-1897. doi: https://doi.org/10.1007/s00125-013-2929-6

26. Boljat A, Gunjača I, Konstantinović I, et al. Environmental Risk Factors for Type 1 Diabetes Mellitus Development. Exp Clin Endocrinol Diabetes. 2017;125(08):563-570. doi: https://doi.org/10.1055/s-0043-109000

27. Virtanen SM, Kenward MG, Erkkola M, et al. Age at introduction of new foods and advanced beta cell autoimmunity in young children with HLA-conferred susceptibility to type 1 diabetes. Diabetologia. 2006;49(7):1512-1521. doi: https://doi.org/10.1007/s00125-006-0236-1

28. Karlén J, Faresjö T, Ludvigsson J. Could the social environment trigger the induction of diabetes related autoantibodies in young children? Scand J Public Health. 2012;40(2):177-182. doi: https://doi.org/10.1177/1403494811435491

29. Victora CG, Bahl R, Barros AJD, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387(10017):475-490. doi: https://doi.org/10.1016/S0140-6736(15)01024-7

30. Cardwell CR, Stene LC, Ludvigsson J, et al. Breast-Feeding and Childhood-Onset Type 1 Diabetes. Diabetes Care. 2012;35(11):2215-2225. doi: https://doi.org/10.2337/dc12-0438

31. Lund-Blix NA, Stene LC, Rasmussen T, et al. Infant Feeding in Relation to Islet Autoimmunity and Type 1 Diabetes in Genetically Susceptible Children: The MIDIA Study. Diabetes Care. 2015;38(2):257-263. doi: https://doi.org/10.2337/dc14-1130

32. Altobelli E, Petrocelli R, Verrotti A, et al. Genetic and environmental factors affect the onset of type 1 diabetes mellitus. Pediatr Diabetes. 2016;17(8):559-566. doi: https://doi.org/10.1111/pedi.12345

33. Güngör D, Nadaud P, LaPergola CC, et al. Infant milkfeeding practices and diabetes outcomes in offspring: a systematic review. Am J Clin Nutr. 2019;109(S1):817S-837S. doi: https://doi.org/10.1093/ajcn/nqy311

34. Lund-Blix NA, Dydensborg Sander S, Størdal K, et al. Infant Feeding and Risk of Type 1 Diabetes in Two Large Scandinavian Birth Cohorts. Diabetes Care. 2017;40(7):920-927. doi: https://doi.org/10.2337/dc17-0016

35. Frederiksen B, Kroehl M, Lamb MM, et al. Infant Exposures and Development of Type 1 Diabetes Mellitus. JAMA Pediatr. 2013;167(9):808. doi: https://doi.org/10.1001/jamapediatrics.2013.317

36. Hakola L, Takkinen H-M, Niinistö S, et al. Infant Feeding in Relation to the Risk of Advanced Islet Autoimmunity and Type 1 Diabetes in Children With Increased Genetic Susceptibility: A Cohort Study. Am J Epidemiol. 2018;187(1):34-44. doi: https://doi.org/10.1093/aje/kwx191

37. Virtanen SM, Nevalainen J, Kronberg-Kippilä C, et al. Food consumption and advanced β cell autoimmunity in young children with HLA-conferred susceptibility to type 1 diabetes: a nested case-control design. Am J Clin Nutr. 2012;95(2):471-478. doi: https://doi.org/10.3945/ajcn.111.018879

38. Lamb MM, Miller M, Seifert JA, et al. The effect of childhood cow’s milk intake and HLA-DR genotype on risk of islet autoimmunity and type 1 diabetes: The Diabetes Autoimmunity Study in the Young. Pediatr Diabetes. 2015;16(1):31-38. doi: https://doi.org/10.1111/pedi.12115

39. Knip M, Åkerblom HK, Al Taji E, et al. Effect of Hydrolyzed Infant Formula vs Conventional Formula on Risk of Type 1 Diabetes. JAMA. 2018;319(1):38. doi: https://doi.org/10.1001/jama.2017.19826

40. Hummel S, Beyerlein A, Tamura R, et al. First infant formula type and risk of islet autoimmunity in the environmental determinants of diabetes in the young (TEDDY) study. Diabetes Care. 2017;40(3):398-404. doi: https://doi.org/10.2337/dc16-1624

41. Chmiel R, Beyerlein A, Knopff A, et al. Early infant feeding and risk of developing islet autoimmunity and type 1 diabetes. Acta Diabetol. 2015;52(3):621-624. doi: https://doi.org/10.1007/s00592-014-0628-5

42. Pieścik-Lech M, Chmielewska A, Shamir R, Szajewska H. Systematic Review: Early Infant Feeding and the Risk of Type 1 Diabetes. J Pediatr Gastroenterol Nutr. 2017;64(3):454-459. doi: https://doi.org/10.1097/MPG.0000000000001293

43. Schoen S, Jergens S, Barbaresko J, et al. Diet Quality during Infancy and Early Childhood in Children with and without Risk of Type 1 Diabetes: A DEDIPAC Study. Nutrients. 2017;9(1):48. doi: https://doi.org/10.3390/nu9010048

44. Rasmussen T, Witsø E, Tapia G, et al. Self-reported lower respiratory tract infections and development of islet autoimmunity in children with the type 1 diabetes high-risk HLA genotype: the MIDIA study. Diabetes Metab Res Rev. 2011;27(8):834-837. doi: https://doi.org/10.1002/dmrr.1258

45. Beyerlein A, Wehweck F, Ziegler A-G, Pflueger M. Respiratory Infections in Early Life and the Development of Islet Autoimmunity in Children at Increased Type 1 Diabetes Risk. JAMA Pediatr. 2013;167(9):800. doi: https://doi.org/10.1001/jamapediatrics.2013.158

46. Beyerlein A, Donnachie E, Jergens S, Ziegler A-G. Infections in Early Life and Development of Type 1 Diabetes. JAMA. 2016;315(17):1899. doi: https://doi.org/10.1001/jama.2016.2181

47. Lee H-S, Briese T, Winkler C, et al. Next-generation sequencing for viruses in children with rapid-onset type 1 diabetes. Diabetologia. 2013;56(8):1705-1711. doi: https://doi.org/10.1007/s00125-013-2924-y

48. Morgan NG, Richardson SJ. Enteroviruses as causative agents in type 1 diabetes: loose ends or lost cause? Trends Endocrinol Metab. 2014;25(12):611-619. doi: https://doi.org/10.1016/j.tem.2014.08.002

49. Krogvold L, Edwin B, Buanes T, et al. Detection of a Low-Grade Enteroviral Infection in the Islets of Langerhans of Living Patients Newly Diagnosed With Type 1 Diabetes. Diabetes. 2015;64(5):1682-1687. doi: https://doi.org/10.2337/db14-1370

50. Yeung W-CG, Rawlinson WD, Craig ME. Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ. 2011;342(1):d35-d35. doi: https://doi.org/10.1136/bmj.d35

51. Richardson SJ, Morgan NG. Enteroviral infections in the pathogenesis of type 1 diabetes: new insights for therapeutic intervention. Curr Opin Pharmacol. 2018;43:11-19. doi: https://doi.org/10.1016/j.coph.2018.07.006

52. Laitinen OH, Honkanen H, Pakkanen O, et al. Coxsackievirus B1 Is Associated With Induction of β-Cell Autoimmunity That Portends Type 1 Diabetes. Diabetes. 2014;63(2):446-455. doi: https://doi.org/10.2337/db13-0619

53. Mustonen N, Siljander H, Peet A, et al. Early childhood infections precede development of beta-cell autoimmunity and type 1 diabetes in children with HLA-conferred disease risk. Pediatr Diabetes. 2018;19(2):293-299. doi: https://doi.org/10.1111/pedi.12547

54. Hyöty H. Viruses in type 1 diabetes. Pediatr Diabetes. 2016;17:56-64. doi: https://doi.org/10.1111/pedi.12370

55. Morgan E, Halliday SR, Campbell GR, Cardwell CR, Patterson CC. Vaccinations and childhood type 1 diabetes mellitus: a metaanalysis of observational studies. Diabetologia. 2016;59(2):237-243. doi: https://doi.org/10.1007/s00125-015-3800-8

56. Beyerlein A, Strobl AN, Winkler C, et al. Vaccinations in early life are not associated with development of islet autoimmunity in type 1 diabetes high-risk children: Results from prospective cohort data. Vaccine. 2017;35(14):1735-1741. doi: https://doi.org/10.1016/j.vaccine.2017.02.049

57. Elding Larsson H, Lynch KF, Lonnrot M, et al. Pandemrix(R) vaccination is not associated with increased risk of islet autoimmunity or type 1 diabetes in the TEDDY study children. Diabetologia. 2018;61(1):193–202.

58. Jolliffe DA, Griffiths CJ, Martineau AR. Vitamin D in the prevention of acute respiratory infection: Systematic review of clinical studies. J Steroid Biochem Mol Biol. 2013;136:321-329. doi: https://doi.org/10.1016/j.jsbmb.2012.11.017

59. Kongsbak M, Levring TB, Geisler C, von Essen MR. The Vitamin D Receptor and T Cell Function. Front Immunol. 2013;4:148. doi: https://doi.org/10.3389/fimmu.2013.00148

60. Olliver M, Spelmink L, Hiew J, et al. Immunomodulatory Effects of Vitamin D on Innate and Adaptive Immune Responses to Streptococcus pneumoniae. J Infect Dis. 2013;208(9):1474-1481. doi: https://doi.org/10.1093/infdis/jit355

61. Mitri J, Pittas AG. Vitamin D and diabetes. Endocrinol Metab Clin North Am. 2014;43(1):205-232. doi: https://doi.org/10.1016/j.ecl.2013.09.010

62. Antico A, Tampoia M, Tozzoli R, Bizzaro N. Can supplementation with vitamin D reduce the risk or modify the course of autoimmune diseases? A systematic review of the literature. Autoimmun Rev. 2012;12(2):127-136. doi: https://doi.org/10.1016/j.autrev.2012.07.007

63. Noble JA, Erlich HA. Genetics of Type 1 Diabetes. Cold Spring Harb Perspect Med. 2012;2(1):a007732. doi: https://doi.org/10.1101/cshperspect.a007732

64. Gregoriou E, Mamais I, Tzanetakou I, et al. The Effects of Vitamin D Supplementation in Newly Diagnosed Type 1 Diabetes Patients: Systematic Review of Randomized Controlled Trials. Rev Diabet Stud. 2017;14(2-3):260-268. doi: https://doi.org/10.1900/RDS.2017.14.260

65. Miller KM, Hart PH, de Klerk NH, et al. Are low sun exposure and/or vitamin D risk factors for type 1 diabetes? Photochem Photobiol Sci. 2017;16(3):381-398. doi: https://doi.org/10.1039/C6PP00294C

66. Chen Y, Huang Y, Qiao Y, et al. Climates on incidence of childhood type 1 diabetes mellitus in 72 countries. Sci Rep. 2017;7(1):12810. doi: https://doi.org/10.1038/s41598-017-12954-8

67. Bahadoran Z, Ghasemi A, Mirmiran P, et al. Nitrate-nitritenitrosamines exposure and the risk of type 1 diabetes: A review of current data. World J Diabetes. 2016;7(18):433. doi: https://doi.org/10.4239/wjd.v7.i18.433

68. Hu Y, Wong FS, Wen L. Antibiotics, gut microbiota, environment in early life and type 1 diabetes. Pharmacol Res. 2017;119:219-226. doi: https://doi.org/10.1016/j.phrs.2017.01.034

69. Gülden E, Wong FS, Wen L. The gut microbiota and Type 1 Diabetes. Clin Immunol. 2015;159(2):143-153. doi: https://doi.org/10.1016/j.clim.2015.05.013

70. Kostic AD, Gevers D, Siljander H, et al. The Dynamics of the Human Infant Gut Microbiome in Development and in Progression toward Type 1 Diabetes. Cell Host Microbe. 2015;17(2):260-273. doi: https://doi.org/10.1016/j.chom.2015.01.001

71. de Goffau MC, Luopajärvi K, Knip M, et al. Fecal Microbiota Composition Differs Between Children With β-Cell Autoimmunity and Those Without. Diabetes. 2013;62(4):1238-1244. doi: https://doi.org/10.2337/db12-0526

72. Henschel AM, Cabrera SM, Kaldunski ML, et al. Modulation of the diet and gastrointestinal microbiota normalizes systemic inflammation and β-cell chemokine expression associated with autoimmune diabetes susceptibility. PLoS One. 2018;13(1):e0190351. doi: https://doi.org/10.1371/journal.pone.0190351

73. Mariño E, Richards JL, McLeod KH, et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol. 2017;18(5):552-562. doi: https://doi.org/10.1038/ni.3713

74. Uusitalo U, Liu X, Yang J, et al. Association of Early Exposure of Probiotics and Islet Autoimmunity in the TEDDY Study. JAMA Pediatr. 2016;170(1):20. doi: https://doi.org/10.1001/jamapediatrics.2015.2757

75. Clausen TD, Bergholt T, Bouaziz O, et al. Broad-Spectrum Antibiotic Treatment and Subsequent Childhood Type 1 Diabetes: A Nationwide Danish Cohort Study. PLoS One. 2016;11(8):e0161654. doi: https://doi.org/10.1371/journal.pone.0161654

76. Moulder R, Lahesmaa R. Early signs of disease in type 1 diabetes. Pediatr Diabetes. 2016;17:43-48. doi: https://doi.org/10.1111/pedi.12329

77. Stiemsma L, Reynolds L, Turvey S, Finlay B. The hygiene hypothesis: current perspectives and future therapies. ImmunoTargets Ther. 2015;4:143-157. doi: https://doi.org/10.2147/ITT.S61528

78. Magnus MC, Olsen SF, Granström C, et al. Infant Growth and Risk of Childhood-Onset Type 1 Diabetes in Children From 2 Scandinavian Birth Cohorts. JAMA Pediatr. 2015;169(12):e153759. doi: https://doi.org/10.1001/jamapediatrics.2015.3759

79. Yassouridis C, Leisch F, Winkler C, et al. Associations of growth patterns and islet autoimmunity in children with increased risk for type 1 diabetes: a functional analysis approach. Pediatr Diabetes. 2017;18(2):103-110. doi: https://doi.org/10.1111/pedi.12368

80. Beyerlein A, Thiering E, Pflueger M, et al. Early infant growth is associated with the risk of islet autoimmunity in genetically susceptible children. Pediatr Diabetes. 2014;15(7):534-542. doi: https://doi.org/10.1111/pedi.12118

81. Meah FA, DiMeglio LA, Greenbaum CJ, et al. The relationship between BMI and insulin resistance and progression from single to multiple autoantibody positivity and type 1 diabetes among TrialNet Pathway to Prevention participants. Diabetologia. 2016;59(6):1186-1195. doi: https://doi.org/10.1007/s00125-016-3924-5

82. Goldacre RR. Associations between birthweight, gestational age at birth and subsequent type 1 diabetes in children under 12: a retrospective cohort study in England, 1998–2012. Diabetologia. 2018;61(3):616-625. doi: https://doi.org/10.1007/s00125-017-4493-y

83. Sharif K, Watad A, Coplan L, et al. Psychological stress and type 1 diabetes mellitus: what is the link? Expert Rev Clin Immunol. 2018;14(12):1081-1088. doi: https://doi.org/10.1080/1744666X.2018.1538787

84. Zung A, Blumenfeld O, Shehadeh N, et al. Increase in the incidence of type 1 diabetes in Israeli children following the Second Lebanon War. Pediatr Diabetes. 2012;13(4):326-333. doi: https://doi.org/10.1111/j.1399-5448.2011.00838.x

85. Virk J, Ritz B, Li J, et al. Childhood Bereavement and Type 1 Diabetes: a Danish National Register Study. Paediatr Perinat Epidemiol. 2016;30(1):86-92. doi: https://doi.org/10.1111/ppe.12247


Supplementary files

Review

For citations:


Korneva K.G., Strongin L.G., Nazarova K.Yu., Zagainov V.E. Potential risk factors for diabetes mellitus type 1. Diabetes mellitus. 2022;25(3):256-266. (In Russ.) https://doi.org/10.14341/DM12573

Views: 9662


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)