Nephroprotective potential of glucagon-like peptide-1 receptor agonists
https://doi.org/10.14341/DM12379
Abstract
Patients with diabetes mellitus (DM), which is a key factor in the development of kidney diseases, are increasingly competing for limited healthcare resources. Diabetic kidney disease (DKD) remains a significant cause of end-stage renal failure in the patients of many countries and is also associated with a high risk of cardiovascular pathology and mortality. The variety of clinical phenotypes of DKD in patients with type 2 diabetes mellitus (DM2) occurring due to a variety of pathogenetic factors and the characteristics of the evolution of complications under the influence of contemporary therapeutic methods, has been a special subject of discussion in recent years. Optimal control of the level of glycaemia and hypertension and timely blockade of the renin–angiotensin–aldosterone system do not provide sufficient protection for the kidneys. Over the recent decade, the nephroprotective potential of a group of modern anti-hyperglycaemic agents, i.e., glucagon-like peptide 1 receptor agonists (GLP1 RA) has been actively discussed. GLP1 RA have proven to be quite effective in controlling glycaemia and metabolic syndrome components (weight, systolic blood pressure and lipid profile) and in significantly reducing the risk of the primary, three-component endpoint (major adverse cardiac events: cardiovascular death, nonfatal myocardial infarction and nonfatal stroke) according to large studies on cardiovascular safety. The renal effects of GLP1 RA are attributed to a wide range of direct and indirect effects of glucagon-like peptide-1 on renal structures and functions owing to their anti-inflammatory, anti-oxidant and anti-apoptotic properties.
About the Authors
Minara S. ShamkhalovaRussian Federation
MD, PhD
Igor A. Sklyanik
Russian Federation
MD, PhD student
Marina V. Shestakova
Russian Federation
MD, PhD, Professor
References
1. Koye DN, Magliano DJ, Nelson RG, Pavkov ME. The global epidemiology of diabetes and kidney disease. Adv Chronic Kidney Dis. 2018;25(2):121−132. doi: https://doi.org/10.1053/j.ackd.2017.10.011
2. Tonneijck L, Muskiet MH, Smits MM, et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J Am Soc Nephrol. 2017;28(4):1023–1039. doi: https://doi.org/10.1681/ASN.2016060666
3. Осложнения сахарного диабета. Лечение и профилактика / Под ред. И.И. Дедова, М.В. Шестаковой. — М.: МИА, 2017. — 744 с. [Oslozhneniya sakharnogo diabeta. Lecheniye i profilaktika. Ed. by I.I. Dedov, M.V. Shestakova. Moscow: Meditsinskoye informatsionnoye agentstvo; 2017. 744 р. (In Russ.)]
4. Afrarian M, Zelnick LR, Hall YN, et al. Clinical manifestations of kidney disease fmong US adults with diabetes, 1988−2014. JAMA. 2016;316(6):602−610. doi: https://doi.org/10.1001/jama.2016.10924
5. Fox CS, Matsushita K, Woodward M, et al. Associations of kidney diseases measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet. 2012;380(98540):1662−1673. doi: https://doi.org/10.1016/S0140-6736(12)61350-6
6. Shyangdan DS, Royle P, Clar C, et al. Glucagon-like peptide analogues for type 2 diabetes malloitus. Cochrane Database System Rev. 2011;2011:CD006423. doi: https://doi.org/10.1002/14651858.CD006423.pub2
7. Nauck M. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes Obes Metab. 2016;18(3):203–216. doi: https://doi.org/10.1111/dom.12591.
8. Smits MM, van Raalte DH, Tonneijck L, et al. GLP-1 based therapies: clinical implications for gastroenterologists. Gut. 2016;65(4):702–711. doi: https://doi.org/10.1136/gutjnl-2015-310572
9. Bethel MA, Patel RA, Merrill P, et al. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: meta-analysis. Lancet Diab Endocr. 2018;6(2):105−113. doi: https://doi.org/10.1016/S2213-8587(17)30412-6
10. Buse JB, Wexler DJ, Tsapas A, et al. 2019 Update to: management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020;43(2):487−493. doi: https://doi.org/10.2337/dci19-0066
11. Avgerinos I, Karaqiannis T, Malandris K, et al. Glucagon-like peptide-1 receptor agonists and microvascular outcomes in type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metab. 2019;21(1):188−193. doi: https://doi.org/10.1111/dom.13484
12. Dicembrini I, Nreu B, Scatena A, et al. Microvascular effects of glucagon-like peptide-1 receptor agonists in type 2 diabetes: a meta-analysis of randomized controlled trials. Acta Diabetol. 2017;54(10): 933–941. doi: https://doi.org/10.1007/s00592-017-1031-9
13. Gargiulo P, Savarese G, D’Amore C, et al. Efficacy and safety of glucagon-like peptide-1 agonists on macrovascular and microvascular events in type 2 diabetes mellitus: a meta-analysis. Nutr Metab Cardiovasc Dis. 2017;27(12):1081–1088. doi: https://doi.org/10.1016/j.numecd.2017.09.006
14. Greco EV, Russo G, Giandalia A, et al. GLP-1 receptor agonist and kidney protection. Medicina. 2019;55:233. doi: https://doi.org/10.3390/medicina55060233
15. Skov J, Dejgaard A, Frokiaer J, et al. Glucagon-like peptide-1 (GLP-1): effect on kidney hemodynamics and renin-angiotensin- aldosterone system in healthy men. J Clin Endocrinol Metab. 2013;98(4):E664−E671. doi: https://doi.org/10.1210/jc.2012-3855
16. Gutzwiller JP, Tschopp S, Bock A, et al. Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J Clin Endocrinol Metab. 2004;89(6):3055−3061. doi: https://doi.org/10.1210/jc.2003-031403
17. Asmar A, Simonsen L, Asmar M, et al. Renal extraction and acute effects of glucagon-like peptide-1 on central and renal hemodynamics in healthy men. Am J Physiol Endocrinol Metab. 2015;308(8):E641−E649. doi: https://doi.org/10.1152/ajpendo.00429.2014
18. Muskiet MH, Tonneijck L, Smits MM, et al. Acute renal haemodynamic effects of glucagonlike peptide-1 receptor agonist exenatide in healthy overweight men. Diabetes Obes Metab. 2016;18(2):178−185. doi: https://doi.org/10.1111/dom.12601
19. Tonneijck L, Smits MM, Muskiet MH, et al. Acute renal effects of the GLP-1 receptor agonist exenatide in overweight type 2 diabetes patients: a randomised, double-blind, placebo-controlled trial. Diabetologia. 2016;59(7):1412−1421. doi: https://doi.org/10.1007/s00125-016-3938-z
20. Skov J, Pedersen M, Holst JJ, et al. Short-term effects of liraglutide on kidney function and vasoactive hormones in type 2 diabetes: a randomized clinical trial. Diabetes Obes Metab. 2016;18(1):581−589. doi: https://doi.org/10.1111/dom.12651
21. Kim M, Platt MJ, Shibasaki T et al. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med. 2013;19(5):567−575. doi: https://doi.org/10.1038/nm.3128
22. Lovshin JA, Barnie A, de Almeida A, et al. Liraglutide promotes natriuresis but does not increase circulating levels of atrial natriuretic peptide in hypertensive subjects with type 2 diabetes. Diabetes Care. 2015;38(1):132–139. doi: https://doi.org/10.2337/dc14-1958
23. Tonneijck L, Smits MM, Muskiet MH, et al. Renal effects of DPP-4 inhibitor sitagliptin or GLP-1 receptor agonist liraglutide in overweight patients with type 2 diabetes: a 12-week, randomized, double-blind, placebo-controlled trial. Diabetes Care. 2016;39(11):2042−2050. doi: https://doi.org/10.2337/dc16-1371
24. Fujita H, Morii T, Fujishima H, et al. The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney Int. 2014;85(3):579−589. doi: https://doi.org/10.1038/ki.2013.427
25. Tanaka T, Higashijima Y, Wada T, Nangaku M. The potential for renoprotection with incretin-based drugs. Kidney Int. 2014;86(4):701−711. doi: https://doi.org/10.1038/ki.2014.236
26. Thomas MC. The potential and pitfalls of GLP-1 receptor agonists for renal protection in type 2 diabetes. Diabetes Metab. 2017;43 Suppl 1:2S20−2S27. doi: https://doi.org/10.1016/S1262-3636(17)30069-1
27. Farah LX, Valentini V, Pessoa TD, et al. The physiological role of glucagon-like peptide-1 in the regulation of renal function. Am J Physiol Renal Physiol. 2016;310(2):F123−F127. doi: https://doi.org/10.1152/ajprenal.00394.2015
28. McDonough AA, Leong PK, Yang LE. Mechanisms of pressure natriuresis: how blood pressure regulates renal sodium transport. Ann N Y Acad Sci. 2003;986:669−677. doi: https://doi.org/10.1111/j.1749-6632.2003.tb07281.x
29. Van Baar MJ, van der Art AB, Hoogenberg K, et al. The incretin pathway as a therapeutic target in diabetic kidney disease: a clinical focus on GLP-1 receptor agonists. Ther Adv Endocrinol Metab. 2019;10:2042018819865398. doi: https://doi.org/10.1177/2042018819865398
30. Pyke C, Heller RS, Kirk RK, et al. GLP-1 receptor localization in monkey and human tissue: Novel distribution revealed with extensively validated monoclonal antibody. Endocrinology. 2014;155(4):1280−1290. doi: https://doi.org/10.1210/en.2013-1934
31. Muskiet MH, Smits MM, Morsink LM, Diamant M. The gut-renal axis: do incretin-based agents confer renoprotection in diabetes? The gut-renal axis: do incretin-based agents confer renoprotection in diabetes? Nat Rev Nephrol. 2014;10(2):88−103. doi: https://doi.org/10.1038/nrneph.2013.272
32. Von Scholten BJ, Hansen TW, Goetze JP, et al. Glucagon-like peptide 1 receptor agonist (GLP-1 RA): long-term effect on kidney function in patients with type 2 diabetes. J Diabetes Complications. 2015;29(5):670−674. doi: https://doi.org/10.1016/j.jdiacomp.2015.04.004
33. Von Scholten BJ, Lajer M, Goetze JP, et al. Time course and mechanisms of the anti-hypertensive and renal effects of liraglutide treatment. Diabet Med. 2015;32(3):343−352. doi: https://doi.org/10.1111/dme.12594
34. Davies MJ, Bain SC, Atkin SL, et al. Efficacy and safety of liraglutide versus placebo as add-on to glucose-lowering therapy in patients with type 2 diabetes and moderate renal impairment (LIRARENAL): a randomized clinical trial. Diabetes Care. 2016;39(2):222−230. doi: https://doi.org/10.2337/dc14-2883
35. Tuttle KR, Heilmann C, Hoogwerf BJ, et al. Effects of exenatide on kidney function, adverse events, and clinical end points of kidney disease in type 2 diabetes. Am J Kidney Dis. 2013;62(2):396−398. doi: https://doi.org/10.1053/j.ajkd.2013.03.026
36. Tuttle KR, McKinney TD, Davidson JA, et al. Effects of once-weekly dulaglutide on kidney function in patients with type 2 diabetes in phase II and III clinical trials. Diabetes Obes Metab. 2017;19(3):436−441. doi: https://doi.org/10.1111/dom.12816
37. Von Scholten BJ, Persson F, Rosenlund S, et al. The effect of liraglutide on renal function: a randomized clinical trial. Diabetes Obes Metab. 2017;19(2):239−247. doi: https://doi.org/10.1111/dom.12808
38. Tonneijck L, Muskiet MH, Smits MM, et al. Postprandial renal haemodynamic effect of lixisenatide versus once-daily insulin glulisine in type 2 diabetes patients on insulin-glargine: an 8-week, randomised, open-label trial. Diabetes Obes Metab. 2017;19(12):1669−1680. doi: https://doi.org/10.1111/dom.12985
39. Lee YS, Jun HS. Anti-inflammatory effects of GLP-1-based therapies beyond glucose control. Mediators Inflamm. 2016;2016:3094642. doi: https://doi.org/10.1155/2016/3094642
40. Deb DK, Bao R, Li YC. Critical role of the cAMP-PKA pathway in hyperglycemia-induced epigenetic activation of fibrogenic program in the kidney. FASEB J. 2017;31(5):2065−2075. doi: https://doi.org/10.1096/fj.201601116R
41. Kodera R, Shikata K, Kataoka HU, et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes. Diabetologia. 2011;54(4):965−978. doi: https://doi.org/10.1007/s00125-010-2028-x
42. Hendarto H, Inoguchi T, Maeda Y, et al. GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases. Metabolism. 2012;61(10):1422−1434. doi: https://doi.org/10.1016/j.metabol.2012.03.002
43. Sourris KC, Yao H, Jerums G, et al. Can targeting the incretin pathway dampen RAGE-mediated events in diabetic nephropathy? Curr Drug Targets. 2016;17(11):1252–1264. doi: https://doi.org/10.2174/1389450116666150722141418
44. Xin W, Li Z, Xu Y, et al. Autophagy protects human podocytes from high glucose-induced injury by preventing insulin resistance. Metabolism. 2016;65(9):1307–1315. doi: https://doi.org/10.1016/j.metabol.2016.05.015
45. Yang H, Li H, Wang Z, et al. Exendin-4 ameliorates renal ischemia-reperfusion injury in the rat. J Surg Res. 2013;185(2):825−832. doi: https://doi.org/10.1016/j.jss.2013.06.042
46. Wang C, Li L, Liu S, et al. GLP-1 receptor agonist ameliorates obesity-induced chronic kidney injury via restoring renal metabolism homeostasis. PLoS ONE. 2018;13(3):e0193473.
47. Roscioni SS, Heerspink HJ, de Zeeuw D. The effect of RAAS blockade on the progression of diabetic nephropathy. Nat Rev Nephrol. 2014;10(2):77–87. doi: https://doi.org/10.1038/nrneph.2013.251
48. Wang L, Li P, Tang Z, et al. Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of liraglutide and saxagliptin treatment. Sci Rep. 2016;6:33251. doi: https://doi.org/10.1038/srep33251
49. Sircana A, de Michieli F, Parente R, et al. Gut microbiota, hypertension and chronic kidney disease: recent advances. Pharmacological Research. 2019;144:390−408. doi: https://doi.org/10.1016/j.phrs.2018.01.013
50. Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373(23):2247−2257. doi: https://doi.org/10.1056/NEJMoa1509225
51. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–322. doi: https://doi.org/10.1056/NEJMoa1603827
52. Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–1844. doi: https://doi.org/10.1056/NEJMoa1607141
53. Bethel MA, Mentz RJ, Merrill P, et al. Renal outcomes in the EXenatide study of cardiovascular event lowering (EXSCEL). Diabetes. 2018;67(Suppl. 1):A522. doi: https://doi.org/10.2337/db18-522-p
54. Hernandez AF, Green JB, Janmohamed S, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-dlind, randomised placebo-controlled trial. Lancet. 2018;392(10157):1519−1529. doi: https://doi.org/10.1016/S0140-6736(18)32261-X
55. Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomized placebo-controlled trial. Lancet. 2019;394(10193):121−130. doi: https://doi.org/10.1016/S0140-6736(19)31149-3
56. Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomized, placebo-controlled trial. Lancet. 2019;394(10193):131−138. doi: https://doi.org/10.1016/S0140-6736(19)31150-X
57. Zoungas S, Arima H, Gerstein HC, et al. Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomized controlled trials. Lancet Diabetes Endocrinol. 2017;5(6):431–437. doi: https://doi.org/10.1016/S2213-8587(17)30104-3
58. Xie X, Atkins E, Lv J, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet. 2016;387(10017):435–443. doi: https://doi.org/10.1016/S0140-6736(15)00805-3
59. Tuttle KR, Lakshmanan MC, Rayner B, et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomized trial. Lancet Diabetes Endocrinol. 2018;6(8):605–617. doi: https://doi.org/10.1016/S2213-8587(18)30104-9
Supplementary files
|
1. Figure 1. Results of studies on cardiovascular outcomes of glucagon-like peptide receptor agonists 1. | |
Subject | ||
Type | Other | |
View
(227KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Estimated renal effects of glucagon-like peptide 1 receptor agonists [29]: ROS - active oxygen species; TRF - transforming growth factor; NHE3 - sodium hydrogen antiporter 3; rGPP-1 - glucagon-like peptide-1 receptor; AR GLP-1 is a glucagon-like peptide-1 receptor agonist; ATG - angiotensinogen; ANG-I - angiotensin-I; ANG-II - angiotensin II; ETaR - type A endothelin receptor; AT1R - Type 1 Angiotensin Receptor | |
Subject | ||
Type | Other | |
View
(415KB)
|
Indexing metadata ▾ |
|
3. Figure 3. Renal outcomes in studies of cardiovascular safety of drugs of the glucagon-like peptide receptor agonist group 1. RRT - renal replacement therapy, rSCF - estimated glomerular filtration rate | |
Subject | ||
Type | Other | |
View
(353KB)
|
Indexing metadata ▾ |
|
4. Figure 4. Final combined renal point and its constituent components (REWIND study). | |
Subject | ||
Type | Other | |
View
(539KB)
|
Indexing metadata ▾ |
|
5. Figure 5. Dynamics of indicators of renal function in the REWIND study. | |
Subject | ||
Type | Other | |
View
(175KB)
|
Indexing metadata ▾ |
Review
For citations:
Shamkhalova M.S., Sklyanik I.A., Shestakova M.V. Nephroprotective potential of glucagon-like peptide-1 receptor agonists. Diabetes mellitus. 2020;23(1):56-64. (In Russ.) https://doi.org/10.14341/DM12379

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).