The role of lipid droplets in the emergence of diabetes mellitus type 2
https://doi.org/10.14341/DM10251
Abstract
The increased incidence of diabetes mellitus type 2 (DM2T) all over the world and in Russia in particular, indicates a lack of effectiveness of antidiabetic therapy and suggests the existence of gaps in the understanding of the mechanisms of onset and clinical course of this disease as well as a concomitant lack of effectiveness of antidiabetic therapy. It is known that metabolic disorders that cause DM2T are caused by disturbances in mitochondrial activity resulting in increased cellular fatty acid inclusions and insulin resistance. The present review presents the current state of knowledge about new cellular structures, fat inclusions or, using a more conventional term, lipid droplets (LDs), as a pathological feature accompanying the occurrence of DM2T. The review describes the biochemical and functional characteristics of LDs and their possible role in the onset and development of diabetes. The interrelationship of LDs and mitochondria and the effect of LDs on the nervous system are considered. Particular attention is paid to highlighting the effect of the microbiota of the gastrointestinal tract on the dynamics of the emergence of LDs. The GIT microbiota plays an important role in the development and course of many human diseases associated with metabolic disorders. Further knowledge of the relationship between the gastrointestinal microbiota and the dynamics of LD emergence will uncover new aspects of the molecular mechanism of mitochondrial function, which gives the prospect of preventive approaches in the treatment of obesity, metabolic disorders and diabetes.
About the Authors
L. V. AstakhovaRussian Federation
junior research associate
D. S. Katserov
Russian Federation
PhD student
L. V. Matskova
Russian Federation
PhD, leading research associate
References
1. Gross DA, Silver DL. Cytosolic lipid droplets: from mechanisms of fat storage to disease. Crit Rev Biochem Mol Biol. 2014;49(4):304–326. doi: https://doi.org/10.3109/10409238.2014.931337
2. Walther TC, Farese RV Jr. Lipid droplets and cellular lipid metabolism. Annu Rev Biochem. 2012;81:687–714. doi: https://doi.org/10.1146/annurev-biochem-061009-102430
3. Saka HA, Valdivia R. Emerging roles for lipid droplets in immunity and host-pathogen interactions. Annu Rev Cell Dev Biol. 2012;28:411–437. doi: https://doi.org/10.1146/annurev-cellbio-092910-153958
4. Pol A, Gross SP, Parton RG. Review: biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. J Cell Biol. 2014;204(5):635–646. doi: https://doi.org/10.1083/jcb.201311051
5. Guo Y, Cordes KR, Farese RV Jr, Walther TC. Lipid droplets at a glance. J Cell Sci. 2009;122(Pt 6):749–752. doi: https://doi.org/10.1242/jcs.037630
6. Onal G, Kutlu O, Gozuacik D, Dokmeci Emre S. Lipid droplets in health and disease. Lipids Health Dis. 2017;16(1):128. doi: https://doi.org/10.1186/s12944-017-0521-7
7. Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005;365(9467):1333–1346. doi: https://doi.org/10.1016/S0140-6736(05)61032-X
8. Kassan A, Herms A, Fernández-Vidal A, et al. Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. J Cell Biol. 2013;203(6):985–1001. doi: https://doi.org/10.1083/jcb.201305142
9. Wilfling F, Wang H, Haas JT, et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell. 2013;24(4):384–399. doi: https://doi.org/10.1016/j.devcel.2013.01.013
10. Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98(4):2133–2223. doi: https://doi.org/10.1152/physrev.00063.2017
11. Jeukendrup AE. Regulation of fat metabolism in skeletal muscle. Ann N Y Acad Sci. 2002;967:217–235. doi: https://doi.org/10.1111/j.1749-6632.2002.tb04278.x
12. Olofsson SO, Andersson L, Håversen L, et al. The formation of lipid droplets: possible role in the development of insulin resistance/type 2 diabetes. Prostaglandins Leukot Essent Fatty Acids. 2011;85(5):215–218. doi: https://doi.org/10.1016/j.plefa.2011.04.019
13. Kaushik S, Cuervo AM. “AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA”. Autophagy. 2016;12(2):432–438. doi: https://doi.org/10.1080/15548627.2015.1124226
14. Zechner R, Zimmermann R, Eichmann TO, et al. Signals-lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 2012;15(3):279–291. doi: https://doi.org/10.1016/j.cmet.2011.12.018
15. Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism. Nature. 2009;458(7242):1131–1135. doi: https://doi.org/10.1038/nature07976
16. Aramburu J, Drews-Elger K, Estrada-Gelonch A, et al. Regulation of the hypertonic stress response and other cellular functions by the Rel-like transcription factor NFAT5. Biochem Pharmacol. 2006;72(11):1597–1604. doi: https://doi.org/10.1016/j.bcp.2006.07.002
17. Jambunathan S, Yin J, Khan W, et al. FSP27 promotes lipid droplet clustering and then fusion to regulate triglyceride accumulation. PLoS One. 2011;6(12):e28614. doi: https://doi.org/10.1371/journal.pone.0028614
18. Gong J, Sun Z, Wu L, et al. Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J Cell Biol. 2011;195(6):953–963. doi: https://doi.org/10.1083/jcb.201104142
19. Ueno M, Shen WJ, Patel S, et al. Fat-specific protein 27 modulates nuclear factor of activated T cells 5 and the cellular response to stress. J Lipid Res. 2013;54(3):734–743. doi: https://doi.org/10.1194/jlr.M033365
20. Uzbekov R, Roingeard P. Nuclear lipid droplets identified by electron microscopy of serial sections. BMC Res Notes. 2013;6:386. doi: https://doi.org/10.1186/1756-0500-6-386
21. Haemmerle G, Moustafa T, Woelkart G, et al. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. Nat Med. 2011;17(9):1076–1085. doi: https://doi.org/10.1038/nm.2439
22. Lefebvre P, Chinetti G, Fruchart JC, Staels B. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J Clin Invest. 2006;116(3):571–580. doi: https://doi.org/10.1172/JCI27989
23. Supruniuk E, Mikłosz A, Chabowski A. The Implication of PGC-1α on Fatty Acid Transport across Plasma and Mitochondrial Membranes in the Insulin Sensitive Tissues. Front Physiol. 2017;8:923. doi: https://doi.org/10.3389/fphys.2017.00923
24. Shaw CS, Jones DA, Wagenmakers AJ. Network distribution of mitochondria and lipid droplets in human muscle fibres. Histochem Cell Biol. 2008;129(1):65–72. doi: https://doi.org/10.1007/s00418-007-0349-8
25. Tarnopolsky MA, Rennie CD, Robertshaw HA, et al. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol. 2007;292(3):R1271–1278. doi: https://doi.org/10.1152/ajpregu.00472.2006
26. Amati F. Revisiting the diacylglycerol-induced insulin resistance hypothesis. Obes. Rev. 2012;13:40–50. doi: https://doi.org/10.1111/j.1467-789X.2012.01036.x
27. Eiden M, Koulman A, Hatunic M, et al. Mechanistic insights revealed by lipid profiling in monogenic insulin resistance syndromes. Genome Med. 2015;7:63. doi: https://doi.org/10.1186/s13073-015-0179-6
28. Sergi D, Naumovski N, Heilbronn LK, et al. Mitochondrial (Dys)function and insulin resistance: from pathophysiological molecular mechanisms to the impact of diet. Front Physiol. 2019;10:532. doi: https://doi.org/10.3389/fphys.2019.00532
29. Gordaliza-Alaguero I, Cantó C, Zorzano A. Metabolic implications of organelle-mitochondria communication. EMBO Rep. 2019;20(9):e47928. doi: https://doi.org/10.15252/embr.201947928
30. Skuratovskaia D, Litvinova L, Vulf M, et al. From normal to obesity and back: the associations between mitochondrial DNA copy number, gender, and body mass index. Cells. 2019;8(5):430. doi: https://doi.org/https://doi.org/10.3390/cells8050430
31. Gordaliza-Alaguero I, Cantó C, Zorzano A. Metabolic implications of organelle-mitochondria communication. EMBO Rep. 2019;20(9):e47928. doi: https://doi.org/10.15252/embr.201947928
32. Hoppins S. The regulation of mitochondrial dynamics. Curr Opin Cell Biol. 2014;29:46–52. doi: https://doi.org/10.1016/j.ceb.2014.03.005
33. Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol. 2019;20(3):137–155. doi: https://doi.org/10.1038/s41580-018-0085-z
34. Rambold AS, Cohen S, Lippincott-Schwartz J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis,autophagy, and mitochondrial fusion dynamics. Dev Cell. 2015;32(6):678–692. doi: https://doi.org/10.1016/j.devcel.2015.01.029
35. Li Z, Thiel K, Thul PJ, et al. Lipid droplets control the maternal histone supply of drosophila embryos. Curr Biol. 2012;22(22):2104–2113. doi: https://doi.org/10.1016/j.cub.2012.09.018
36. Strauss JA, Shaw CS, Bradley H, et al. Immunofluorescence microscopy of SNAP23 in human skeletal muscle reveals colocalization with plasma membrane, lipid droplets, and mitochondria. Physiol Rep. 2016;4(1). pii: e12662. doi: https://doi.org/10.14814/phy2.12662
37. Wang H, Sreenivasan U, Hu H, et al. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J Lipid Res. 2011;52(12):2159–2168. doi: https://doi.org/10.1194/jlr.M017939
38. Granneman JG, Moore HP, Mottillo EP, et al. Interaction of perilipin-5(Plin5) with adipose triglyceride lipase. J Biol Chem. 2011;286(7)5126–5135. doi: https://doi.org/10.1074/jbc.M110.180711
39. Boutant M, Kulkarni SS, Joffraud M, et al. Mfn2 is critical for brown adipose tissue thermogenic function. EMBO J. 2017;36(11):1543–1558. doi: https://doi.org/10.15252/embj.201694914
40. Cermelli S, Guo Y, Gross SP, Welte MA. The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr Biol. 2006;16(18):1783–1795. doi: https://doi.org/10.1016/j.cub.2006.07.062
41. Herms A, Bosch M, Ariotti N, et al. Cell-to-cell heterogeneity in lipid droplets suggests a mechanism to reduce lipotoxicity. Curr Biol. 2013;23(15):1489–1496. doi: https://doi.org/10.1016/j.cub.2013.06.032
42. Ioannou MS, Liu Z, Lippincott-Schwartz J. A neuron-glia co-culture system for studying intercellular lipid transport. Curr Protoc Cell Biol. 2019;84(1):e95. doi: https://doi.org/10.1002/cpcb.95
43. Liu Y, Chen X, Zhang Y, Liu J. Advancing single-cell proteomics and metabolomics with microfluidic technologies. Analyst. 2019;144(3):846–858. doi: https://doi.org/10.1039/c8an01503a
44. Davletov B, Montecucco C. Lipid function at synapses. Curr Opin Neurobiol. 2010;20(5):543–549. doi: https://doi.org/10.1016/j.conb.2010.06.008
45. Bazinet RP, Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci. 2014;15(12):771–785. doi: https://doi.org/10.1038/nrn3820
46. Cole NB, Murphy DD, Grider T, et al. Lipid droplet binding and oligomerization properties of the Parkinson’s disease protein alpha-synuclein. J Biol Chem. 2002;277(8):6344–6352. doi: https://doi.org/10.1074/jbc.M108414200
47. Gavgiotaki E, Filippidis G, Kalognomou M, et al. Third Harmonic Generation microscopy as a reliable diagnostic tool for evaluating lipid body modification during cell activation: the example of BV-2 microglia cells. J Struct Biol. 2015;189(2):105–113. doi: https://doi.org/10.1016/j.jsb.2014.11.011
48. Liu L, Zhang K, Sandoval H, et al. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell. 2015;160(1-2):177–190. doi: https://doi.org/10.1016/j.cell.2014.12.019
49. Walpole GF, Grinstein S, Westman J. The role of lipids in host–pathogen interactions. IUBMB Life. 2018;70(5):384–392. doi: https://doi.org/10.1002/iub.1737
50. Herker E, Ott M. Unique ties between hepatitis C virus replication and intracellular lipids. Trends Endocrinol Metab. 2011;22(6):241–248. doi: https://doi.org/10.1016/j.tem.2011.03.004
51. Hinson ER, Cresswell P. The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic alpha-helix. Proc Natl Acad Sci U S A. 2009;106(48):20452–20457. doi: https://doi.org/10.1073/pnas.0911679106
52. Jan HM, Chen YC, Shih YY, et al. Metabolic labelling of cholesteryl glucosides in Helicobacter pylori reveals how the uptake of human lipids enhances bacterial virulence. Chem Sci. 2016;7(9):6208–6216. doi: https://doi.org/10.1039/c6sc00889e
53. Anand P, Cermelli S, Li Z, et al. A novel role for lipid droplets in the organismal antibacterial response. Elife. 2012;1:e00003. doi: https://doi.org/10.7554/eLife.00003
54. Sheng Y, Ren H, Limbu SM, et al. The presence or absence of intestinal microbiota affects lipid deposition and related genes expression in zebrafish (danio rerio). Front Microbiol. 2018;9:1124. doi: https://doi.org/10.3389/fmicb.2018.01124
55. Zanni E, Laudenzi C, Schifano E, et al. Impact of a complex food microbiota on energy metabolism in the model organism caenorhabditis elegans. Biomed Res Int. 2015;2015:621709. doi: https://doi.org/10.1155/2015/621709
56. Russell WR, Hoyles L, Flint HJ, Dumas ME. Colonic bacterial metabolites and human health. Curr Opin Microbiol. 2013;16(3):246–254. doi: https://doi.org/10.1016/j.mib.2013.07.002
57. Xiao C, Stahel P, Carreiro AL, et al. Recent advances in triacylglycerol mobilization by the gut. Trends Endocrinol Metab. 2018;29(3):151–163. doi: https://doi.org/10.1016/j.tem.2017.12.001
Supplementary files
|
1. Fig. 1. The structure of fat inclusion. Graphic elements of Adobe Illustrator (adapted from [6]). | |
Subject | ||
Type | Other | |
View
(275KB)
|
Indexing metadata ▾ |
|
2. Fig. 2. Metabolic pathway for the synthesis of triglycerides and sterol esters (adapted [4]) | |
Subject | ||
Type | Other | |
View
(215KB)
|
Indexing metadata ▾ |
Review
For citations:
Astakhova L.V., Katserov D.S., Matskova L.V. The role of lipid droplets in the emergence of diabetes mellitus type 2. Diabetes mellitus. 2020;23(3):267-274. (In Russ.) https://doi.org/10.14341/DM10251

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).