Signaling pathways of β-cell death in type 2 diabetes mellitus: the role of innate immunity
https://doi.org/10.14341/DM10242
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disease, the development of which is mediated by both genetic disorders and various intracellular and extracellular molecular processes. One of the main pathogenetic mechanisms for the development of T2DM is a progressive decrease in the mass and functional reserve of β-cells, which largely determines the course of T2DM. The mechanisms of action of most sugar-lowering drugs are associated with increased secretion of insulin, so it is obvious that the effectiveness of the therapy will also largely depend on the functional state of β-cells. All this explains the great interest in studying the mechanisms of damage of β-cells in T2DM and factors that can accelerate this process, leading to their death and the development of a relative and then absolute insulin deficiency. The mechanisms of dysfunction β-cells in T2DM have not been studied much. This article provides an overview of the data of domestic and foreign literature of recent years on the molecular, intracellular features of various mechanisms of damage and death of β-cells in type 2 diabetes. The results of studies aimed at studying the possible factors and processes leading to their launch are presented.
About the Authors
Zilya. A. KalmykovаRussian Federation
MD, PhD student
Irina V. Kononenko
Russian Federation
MD, PhD, leading research associate
Olga M. Smirnova
Russian Federation
MD, PhD, Professor, chief research associate
Marina Vladimirovna Shestakova
Russian Federation
MD, PhD, Professor
References
1. De Fronzo RA. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes. 1988;37(6):667–687. doi: https://doi.org/10.2337/diab.37.6.667
2. Аметов А.С. Патофизиологический подход как основа выбора стратегии успешного лечения сахарного диабета 2 типа // Фарматека. — 2017. — №5. — С. 28–35. [Ametov AS. Pathophysiological approach as a basis for the selection of strategy for the success treatment of type 2 diabetes mellitus. Farmateka. 2017;(5):28−35. (In Russ.)]
3. Schwartz SS, Epstein S, Corkey BE, et al. The time is right for a new classification system for diabetes: rationale and implications of the β-cell-centric classification schema. Diabetes Care. 2016;39(2):179–186. doi: https://doi.org/10.2337/dc15-1585
4. Han SJ, Boyko EJ. The evidence for an obesity paradox in type 2 diabetes mellitus. Diabetes Metab J. 2018;42(3):179–187. doi: https://doi.org/10.4093/dmj.2018.0055
5. George AM, Jacob AG, Fogelfeld L. Lean diabetes mellitus: an emerging entity in the era of obesity. World J Diabetes. 2015;6(4):613–620. doi: https://doi.org/10.4239/wjd.v6.i4.613
6. Balasubramanyam A. The villain with a thousand faces. J Diabetes Complications. 2014;28(4):434–435. doi: https://doi.org/10.1016/j.jdiacomp.2014.02.007
7. Bernard-Kargar C, Ktorza A. Endocrine pancreas plasticity under physiological and pathological conditions. Diabetes. 2001;50(1):30–35. doi: https://doi.org/10.2337/diabetes.50.2007.s30
8. Аметов А.С. Сахарный диабет 2 типа. Проблемы и решения. Т. 3. 3-е изд., перераб. и доп. — М.: ГЭОТАР-Медиа, 2015. — 256 с. [Ametov AS. Type 2 diabetes mellitus. Problems and solutions. Vol. 3. 3rd revised and updated. Moscow: GEOTAR-Media; 2015. 256 p. (In Russ.)]
9. Аметов А.С. Роль β-клеток в регуляции гомеостаза глюкозыв норме и при сахарном диабете 2 типа // Сахарный диабет. — 2008. — №4. — C. 6–11. [Ametov AS. Rol’ beta-kletok v regulyatsii gomeostaza glyukozyv norme i pri sakharnom diabete 2 tipa. Diabetes mellitus. 2008;(4):6–11. (In Russ.)] doi: https://doi.org/10.14341/2072-0351-5581
10. U.K. Prospective Diabetes Study Group. U.K. Prospective Diabetes Study 16: Overview of 6 Years' Therapy of Type II Diabetes: A Progressive Disease. Diabetes. 1995;44(11):1249-1258. doi: https://doi.org/10.2337/diab.44.11.1249
11. Cho JH, Kim JW, Shin JA, et al. β-cell mass in people with type 2 diabetes. J Diabetes Investig. 2011;2(1):6–17. doi: https://doi.org/10.1111/j.2040-1124.2010.00072.x
12. Butler AE, Janson J, Bonner-Weir S, et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52(1):102–110. doi: https://doi.org/10.2337/diabetes.52.1.102
13. Аметов А.С. β-клетка: секреция инсулина в норме и патологии. Вып. 5. — М.: МИА, 2014. — 132 с. [Ametov AS. β-kletka: sekretsiya insulina v norme i patologii. Issue 5. Moscow: Meditsinskoye informatsionnoye agentstvo; 2014. 132 р. (In Russ.)]
14. Jonsson J, Carlsson L, Edlund T, Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature. 1994;371(6498):606–609. doi: https://doi.org/10.1038/371606a0
15. Masini M, Martino L, Marselli L, et al. Ultrastructural alterations of pancreatic beta cells in human diabetes mellitus. Diabetes Metab Res Rev. 2017;33(6). doi: https://doi.org/10.1002/dmrr.2894
16. Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ. 2012;19(1):107–120. doi: https://doi.org/10.1038/cdd.2011.96
17. Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25(3):486–541. doi: https://doi.org/10.1038/s41418-017-0012-4
18. Brenner C, Cadiou H, Vieira HL, et al. Bcl-2 and bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene. 2000;19(3):329–336. doi: https://doi.org/10.1038/sj.onc.1203298
19. Pirot P, Cardozo AK, Eizirik DL. Mediators and mechanisms of pancreatic beta-cell death in type 1 diabetes. Arq Bras Endocrinol Metabol. 2008;52(2):156–165. doi: https://doi.org/10.1590/s0004-27302008000200003
20. Choi D, Woo M. Executioners of apoptosis in pancreatic beta-cells: not just for cell death. Am J Physiol Endocrinol Metab. 2010;298(4):E735–741. doi: https://doi.org/10.1152/ajpendo.00696.2009
21. Порядин Г.В. Молекулярные механизмы повреждения клеток. — М.: РГМУ, 1997. [Poryadin GV. Molekulyarnyye mekhanizmy povrezhdeniya kletok. Moscow: Russian State Medical University; 1997. (In Russ.)]
22. Rojas J, Bermudez V, Palmar J, et al. Pancreatic beta cell death: novel potential mechanisms in diabetes therapy. J Diabetes Res. 2018;2018:9601801. doi: https://doi.org/10.1155/2018/9601801
23. Srivastava RK. TRAIL/Apo-2L: mechanisms and clinical applications in cancer. Neoplasia. 2001;3(6):535–546. doi: https://doi.org/10.1038/sj.neo.7900203
24. Bravo R, Parra V, Gatica D, et al. Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. Int Rev Cell Mol Biol. 2013;301:215–290. doi: https://doi.org/10.1016/B978-0-12-407704-1.00005-1
25. Дедов И.И., Смирнова О.М., Горелышев А.С. Стресс эндоплазматического ретикулума: цитологический сценарий патогенеза заболеваний человека // Проблемы эндокринологии. — 2012. — Т. 58. — №5. — С. 57–65. [Dedov II, Smirnova OM, Gorelyshev AS. Stress of endoplasmic reticulum: the cytological «scenario» of pathogenesis of human diseases. Problems of endocrinology. 2012;58(5):57–65. (In Russ).]
26. Ellgaard L, Helenius A. Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol. 2003;4(3):181–191. doi: https://doi.org/10.1038/nrm1052
27. Kharroubi I, Ladrière L, Cardozo AK, et al. Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology. 2004;145(11):5087–5096. doi: https://doi.org/10.1210/en.2004-0478
28. Karaskov E, Scott C, Zhang L, et al. Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis. Endocrinology. 2006;147(7):3398–3407. doi: https://doi.org/10.1210/en.2005-1494
29. Marchetti P, Bugliani M, Lupi R, et al. The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients. Diabetologiia. 2007;50(12):2486–2494. doi: https://doi.org/10.1007/s00125-007-0816-8
30. Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000;287(5453):664–666. doi: https://doi.org/10.1126/science.287.5453.664
31. Fonseca SG, Urano F, Burcin M, Gromada J. Stress hypERactivation in the β-cell. Islets. 2010;2(1):1–9. doi: https://doi.org/10.4161/isl.2.1.10456
32. Nakatani Y, Kaneto H, Kawamori D, et al. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J Biol Chem. 2005;280(1):847–851. doi: https://doi.org/10.1074/jbc.M411860200
33. Полторак В.В., Красова Н.С., Горшунская М.Ю. Апоптоз панкреатических β-клеток как новая мишень для инсулинотерапии больных сахарным диабетом 1-го и 2-го типа // Проблемы эндокринной патологии. — 2015. — №1. — С. 90–101. [Poltorak VV, Krasova NS, Gorshunska MY. Apoptosis of pancreatic beta-cells as a new target for insulin therapy of patients with type 1 and 2 diabetes mellitus. Problemi endokrinnoi patologii. 2015;(1):90–101. (In Russ.)] doi: https://doi.org/10.21856/j-PEP.201
34. Hull RL, Westermark GT, Westermark P, Kahn SE. Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab. 2004;89(8):3629–3643. doi: https://doi.org/10.1210/jc.2004-0405
35. Del Vesco AP, Khatlab AS, Goes ESR, et al. Age-related oxidative stress and antioxidant capacity in heat-stressed broilers. Animal. 2017;11(10):1783–1790. doi: https://doi.org/10.1017/S1751731117000386
36. Piarulli F, Sartore G, Lapolla A. Glyco-oxidation and cardiovascular complications in type 2 diabetes: a clinical update. Acta Diabetol. 2013;50(2):101–110. doi: https://doi.org/10.1007/s00592-012-0412-3
37. Ozcan U, Yilmaz E, Ozcan L, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313(5790):1137–1140. doi: https://doi.org/10.1126/science.1128294
38. Breitenbach M, Eckl P. Introduction to oxidative stress in biomedical and biological research. Biomolecules. 2015;5(2):1169–1177. doi: https://doi.org/10.3390/biom5021169
39. Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11(2):136–140. doi: https://doi.org/10.1038/ni.1831
40. Leibowitz G, Bachar E, Shaked M, et al. Glucose regulation of β-cell stress in type 2 diabetes. Diabetes Obes Metab. 2010;12 Suppl 2:66–75. doi: https://doi.org/10.1111/j.1463-1326.2010.01280.x
41. Zhu Y, Liu Q, Zhou Z, Ikeda Y. PDX1, Neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration. Stem Cell Res Ther. 2017;8(1):240. doi: https://doi.org/10.1186/s13287-017-0694-z
42. El-Assaad W, Buteau J, Peyot ML, et al. Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. Endocrinology. 2003;144(9):4154–4163. doi: https://doi.org/10.1210/en.2003-0410
43. Cnop M, Hannaert JC, Hoorens A, et al. Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes. 2001;50(8):1771–1777. doi: https://doi.org/10.2337/diabetes.50.8.1771
44. Аметов A.C, Камынина Л.Л., Ахмедова З.Г. Глюкоза и липотоксичность — взаимоотягощающие факторы при сочетании сахарного диабета типа 2 и ожирения // Врач. — 2014. — №4. — С. 20–23. [Ametov AC, Kamynina LL, Akhmedova ZG. Glucosotoxicity and lipotoxicity are mutually aggravating factors in concomitance of type 2 diabetes mellitus and obesity. Vrach. 2014;(4):20–23. (In Russ.)]
45. Dickens LS, Powley IR, Hughes MA, MacFarlane M. The ‘complexities’ of life and death: death receptor signalling platforms. Exp Cell Res. 2012;318(11):1269–1277. doi: https://doi.org/10.1016/j.yexcr.2012.04.005
46. Halvorsen B, Santilli F, Scholz H, et al. LIGHT/TNFSF14 is increased in patients with type 2 diabetes mellitus and promotes islet cell dysfunction and endothelial cell inflammation in vitro. Diabetologiia. 2016;59(10):2134–2144. doi: https://doi.org/10.1007/s00125-016-4036-y
47. Пекарева Е.В., Никонова Т.В., Смирнова О.М. Роль апоптоза в патогенезе сахарного диабета 1 типа // Сахарный диабет. — 2010. — Т. 13. — №1. — С. 45−49. [Pekareva EV, Nikonova TV, Smirnova OM. The role of apoptosis in pathogenesis of type 1 diabetes mellitus. Diabetes mellitus. 2010;13(1):45−49. (In Russ.)] doi: https://doi.org/10.14341/2072-0351-6016
48. Mattisson IY, Björkbacka H, Wigren M, et al. Elevated markers of death receptor-activated apoptosis are associated with increased risk for development of diabetes and cardiovascular disease. EBioMedicine. 2017;26:187–197. doi: https://doi.org/10.1016/j.ebiom.2017
49. Wang Y, Huang G, Vogel P, et al. Transforming growth factor beta-activated kinase 1 (TAK1)-dependent checkpoint in the survival of dendritic cells promotes immune homeostasis and function. Proc Natl Acad Sci U S A. 2012;109(6):E343–352. doi: https://doi.org/10.1073/pnas.1115635109
50. Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40(2):280–293. doi: https://doi.org/10.1016/j.molcel.2010.09.023
51. Watada H, Fujitani Y. Minireview: autophagy in pancreatic β-cells and its implication in diabetes. Mol Endocrinol. 2015;29(3):338–348. doi: https://doi.org/10.1210/me.2014-1367
52. Mijaljica D, Prescott M, Devenish RJ. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy. 2011;7(7):673–682. doi: https://doi.org/10.4161/auto.7.7.14733
53. Rocchi A, He C. Emerging roles of autophagy in metabolism and metabolic disorders. 2015;10(2):154−164. doi: https://doi.org/10.1007/s11515-015-1354-2
54. Masini M, Bugliani M, Lupi R, et al. Autophagy in human type 2 diabetes pancreatic beta cells. Front Biol (Beijing). 2015;10(2):154–164. doi: https://doi.org/10.1007/s00125-009-1347-2
55. Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol. 2010;22(2):124–131. doi: https://doi.org/10.1016/j.ceb.2009.11.014
56. Shimizu S, Yoshida T, Tsujioka M, Arakawa S. Autophagic cell death and cancer. Int J Mol Sci. 2014;15(2):3145–3153. doi: https://doi.org/10.3390/ijms15023145
57. Noda NN, Inagaki F. Mechanisms of autophagy. Annu Rev Biophys. 2015;44:101–122. doi: https://doi.org/10.1146/annurev-biophys-060414-034248
58. Lapaquette P, Guzzo J, Bretillon L, Bringer MA. Cellular and molecular connections between autophagy and inflammation. Mediators Inflamm. 2015;2015:398483. doi: https://doi.org/10.1155/2015/398483
59. Ковалева О.М., Шитова М.С., Зборовская И.Б. Аутофагия: клеточная гибель или способ выживания? // Клиническая онкогематология. — 2014. — Т. 7. — №2. — С. 103–113. [Kovaleva OM, Shitova MS, Zborovskaya IB. Autophagy: cell death or survival strategy? Clinical oncohematology. 2014;7(2):103–113. (In Russ.)]
60. Marsh BJ, Soden C, Alarcón C, et al. Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine beta-cells. Mol Endocrinol. 2007;21(9):2255–2269. doi: https://doi.org/10.1210/me.2007-0077
61. Bartolome A, Guillen C, Benito M. Autophagy plays a protective role in endoplasmic reticulum stress-mediated pancreatic β cell death. Autophagy. 2012;8(12):1757–1768. doi: https://doi.org/10.4161/auto.21994
62. Ebato C, Uchida T, Arakawa M, et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 2008;8(4):325–332. doi: https://doi.org/10.1016/j.cmet.2008.08.009
63. Rivera JF, Costes S, Gurlo T, et al. Autophagy defends pancreatic β cells from human islet amyloid polypeptide-induced toxicity. J Clin Invest. 2014;124(8):3489–3500. doi: https://doi.org/10.1172/JCI71981
64. Martinon F, Tschopp J. NLRs join TLRs as innate sensors of pathogens. Trends Immunol. 2005;26(8):447–454. doi: https://doi.org/10.1016/j.it.2005.06.004
65. Meylan E, Tschopp J, Karin M. Intracellular pattern recognition receptors in the host response. Nature. 2006;442(7098):39–44. doi: https://doi.org/10.1038/nature04946
66. Vilaysane A, Muruve DA. The innate immune response to DNA. Semin Immunol. 2009;21(4):208–214. doi: https://doi.org/10.1016/j.smim.2009.05.006
67. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677–687. doi: https://doi.org/10.1038/nm.3893
68. Barber GN. Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses. Curr Opin Immunol. 2011;23(1):10–20. doi: https://doi.org/10.1016/j.coi.2010.12.015
69. Abderrazak A, Syrovets T, Couchie D, et al. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol. 2015;4:296–307. doi: https://doi.org/10.1016/j.redox.2015.01.008
70. Lee HM, Kim JJ, Kim HJ, et al. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes. 2013;62(1):194–204. doi: https://doi.org/10.2337/db12-0420
71. Legrand-Poels S, Esser N, L’homme L, et al. Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem Pharmacol. 2014;92(1):131–141. doi: https://doi.org/10.1016/j.bcp.2014.08.013
72. Orlowski GM, Colbert JD, Sharma S, et al. Multiple cathepsins promote pro-IL-1β synthesis and NLRP3-mediated IL-1β activation. J Immunol. 2015;195(4):1685–1697. doi: https://doi.org/10.4049/jimmunol.1500509
73. Kong X, Lu AL, Yao XM, et al. Activation of NLRP3 inflammasome by advanced glycation end products promotes pancreatic islet damage. Oxid Med Cell Longev. 2017;2017:9692546. doi: https://doi.org/10.1155/2017/9692546
74. Shao BZ, Xu ZQ, Han BZ, et al. NLRP3 inflammasome and its inhibitors: a review. Front Pharmacol. 2015;6:262. doi: https://doi.org/10.3389/fphar.2015.00262
Supplementary files
|
1. Fig. 1. Programmable cell death of β-cells in type 2 diabetes mellitus: FASL - FAS ligand; FAS - death receptor from the family of tumor necrosis factors (TNF); TRAIL - TNF-inducing ligand (tumor-necrosis-factor-related apoptosis-inducing ligand); TNF - tumor necrosis factor; DISC - death induction signaling complex; FADD - receptor-linked adapter protein (FAS receptor associated death domen); SR - free radicals; OS - oxidative stress; CHOP is a transcription factor involved in the regulation of apoptosis; Bax, Bak, Bad-family of proapoptotic proteins; Bcl - a family of anti-apoptogenic proteins; ER - endoplasmic reticulum; SER - ER stress; GRP94 - glucose-regulated protein, chaperone; ORP150 - oxygen-regulated protein, chaperone; BIP - immunoglobulin binding protein, chaperone (binding immunoglobulin protein); PERK, IRE1, ATF6 - “ER stress sensors” - transmembrane proteins having a regulatory domain immersed in the lumen of the ER; PERK - PKR-like kinase of the endoplasmic reticulum (pancreatic endoplasmic reticulum kinase); IRE1 - type 1 inositol-dependent enzyme; ATF6 - activating transcription factor 6; TXNIP - thioredoxin-interacting protein (thioredoxin-interacting protein); PAMPs - pathogen-associated molecular patterns (pathogen-associated molecular patterns); DAMPs - molecules released during tissue damage (damage-associated molecular-pattern molecules); P2X7 - purinergic receptor; NLRP3 - containing the NACHT, LRR and PYD domains protein 3 (NACHT, LRR and PYD domains-containing protein 3); ASC - adapter molecule of the NLRP3-inflammasome (apoptosis associated speck-like protein containing a CARD); IL-1β - interleukin 1 beta; IL-18 - interleukin 18; AMPK - AMP-activated protein kinase (AMP-activated protein kinase); mTOR — mammalian rapamycin target (mammalian Target Of Rapamycin); mTORC-1 - mTOR complex 1 (mTOR complex 1); Atg - a family of proteins associated with autophagy (autophagy-related protein); PI3K-1 - phosphatidylinositol-3-kinase-1 (phosphatidylinositol-3-kinase); LC3 - autophagy protein (light chain 3); CNG - end products of glycation. | |
Subject | ||
Type | Other | |
View
(574KB)
|
Indexing metadata ▾ |
|
2. Fig. 2. The process of initiation of autophagy of β-cells in type 2 diabetes mellitus: CNG - end glycation products; OS - oxidative stress; ER - endoplasmic reticulum; SER - ER stress; AMPK - AMP-activated protein kinase (AMP-activated protein kinase); mTOR — mammalian rapamycin target (mammalian Target Of Rapamycin); mTORC-1 - mTOR complex 1 (mTOR complex 1); Atg - a family of proteins associated with autophagy (autophagy-related protein); ACT - protein kinase B; PDK1 - pyruvate dehydrogenase kinase, isoform 1 (phosphoinositide-dependent protein kinase-1); PI3K-1 - phosphatidylinositol-3-kinase-1 (phosphatidylinositol-3-kinase); LC - autophagy proteins (light chain); ULK - Unc-51-like kinase (Unc-51-Like Kinase); Beclin - autophagy cell system protein; FIP200 is a protein interacting with the FAK family of 200 kDa (FAK family-interacting protein of 200 kDa). | |
Subject | ||
Type | Other | |
View
(386KB)
|
Indexing metadata ▾ |
|
3. Fig. 3. The structure of the NLRP3 inflammasomes: LRR is a domain containing a leucine-rich repeat domain; NAD - NBD-associated domain (NBD-associated domain); NACHT - protein, inhibiting neuronal apoptosis (neuronal apoptosis inhibitory protein); ASC is an adapter molecule containing CARD and PYD domains (apoptosis associated speck-like protein containing a CARD). | |
Subject | ||
Type | Other | |
View
(111KB)
|
Indexing metadata ▾ |
Review
For citations:
Kalmykovа Z.A., Kononenko I.V., Smirnova O.M., Shestakova M.V. Signaling pathways of β-cell death in type 2 diabetes mellitus: the role of innate immunity. Diabetes mellitus. 2020;23(2):174-184. (In Russ.) https://doi.org/10.14341/DM10242

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).