Second line therapy in type 2 diabetes: legacy effect activation
Abstract
Type 2 diabetes causes hundred thousand deaths worldwide every year. Though new antidiabetic drugs appear annually and new classes of drugs are invented approximately every ten years still a lot of type 2 diabetic patients remain to be out of the target glycemic levels.
According to most of the guidelines for type 2 diabetes,treatment metformin is the first line therapy for this disease. The choice of second-line antidiabetic drug usually depends on doctors’ preference. That is why defining the correct drug for exact patient is still an urgent question. This review provides data on antidiabetic drugspotential for preventing the progression of micro- and macrovascular complications.The question of the potential of early antidiabetic therapy intensification to activate legacy effect is debated. Early and lasting compensation of diabetes with the use of multiple drugs can become a basis for primary prevention of cardiovascular disease in such patients.
About the Author
Ekaterina A. ShestakovaEndocrinology Research Centre
Russian Federation
MD, PhD
Competing Interests:
speaker for Astra Zeneka, Boeringer Ingelheim, Eli Lilly, MSD, Novartis, Novo Nordisk, Takeda.
References
1. American Diabetes Association. Pharmacologic Approaches to Glycemic Treatment. Diabetes Care. 2017;40(Suppl 1):64-74. doi: 10.2337/dc17-S011
2. American Diabetes Association. Standards of medical care in diabetes-2016: summary of revisions. Diabetes Care. 2016;39(Suppl 1):4–5. doi: 10.2337/dc16-S003
3. Nathan DM, Buse JB, Kahn SE, et al. Rationale and design of the glycemia reduction approaches in diabetes: a comparative effectiveness study (GRADE). Diabetes Care. 2013;36(8):2254-2261. doi:10.2337/dc13-0356
4. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38(1):140-149. doi: 10.2337/dc14-2441
5. Schernthaner G, Mogensen CE, Schernthaner GH. The effects of GLP-1 analogues, DPP-4 inhibitors and SGLT2 inhibitors on the renal system. Diab Vasc Dis Res. 2014;11(5):306-323. doi: 10.1177/1479164114542802
6. U.S. Renal Data System. USRDS 2012 annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States. Bethesda: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2012. Available from: https://www.usrds.org/atlas12.aspx.
7. Дедов И.И., Шестакова М.В., Майоров А.Ю., и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом / Под редакцией И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. – 8-й выпуск // Сахарный диабет. – 2017. – Т. 20. – №1S. – C. 1-121. [Dedov II, Shestakova MV, Mayorov AY, et al. Standards of specialized diabetes care. Edited by Dedov II, Shestakova MV, Mayorov AY. 8th edition. Diabetes mellitus. 2017;20(1S):1-121. (In Russ.)] doi: 10.14341/DM8146
8. Athyros VG, Mitsiou EK, Tziomalos K, et al. Impact of managing atherogenic dyslipidemia on cardiovascular outcome across different stages of diabetic nephropathy. Expert Opin Pharmacother. 2010;11(5): 723–730. doi: 10.1517/14656560903575654
9. Alter ML, Ott IM, von Websky K, et al. DPP-4 inhibition on top of angiotensin receptor blockade offers a new therapeutic approach for diabetic nephropathy. Kidney Blood Press Res. 2012;36(1):119-130. doi: 10.1159/000341487
10. Fujita H, Tania H, Murayama H et al. DPP-4 inhibition with alogliptin on top of angiotensin II type 1 receptor blockade ameliorates albuminuria via up-regulation of SDF-1α in type 2 diabetic patients with incipient nephropathy. Endocrine Journal. 2014;61(2):159-166. doi: 10.1507/endocrj.EJ13-0305
11. Корбут А.И., Климонтов В.В. Терапия, основанная на инкретинах: почечные эффекты // Сахарный диабет. – 2016. – Т. 19. – №1. – C. 53-63. [Korbut AI, Klimontov VV. Incretin-based therapy: renal effects. Diabetes mellitus. 2016;19(1):53-63. (In Russ.)] doi: 10.14341/DM7727
12. Groop PH, Cooper ME, Perkovic V, et al. Dipeptidyl peptidase-4 inhibition with linagliptin and effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: Rationale and design of the MARLINA-T2DTM trial. Diab Vasc Dis Res. 2015;12(6):455-462. doi: 10.1177/1479164115579002
13. Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med. 2016;375(4):323-334. doi: 10.1056/NEJMoa1515920
14. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017;377:644-657. doi: 10.1056/NEJMoa1611925
15. Дедов И.И., Шестакова М.В., Викулова О.К. Эпидемиология сахарного диабета в Российской Федерации: клинико-статистический анализ по данным Федерального регистра сахарного диабета // Сахарный диабет. – 2017. – Т. 20. – №1. – C. 13-41 [Dedov II, Shestakova MV, Vikulova OK. Epidemiology of diabetes mellitus in Russian Federation: clinical and statistical report according to the federal diabetes registry. Diabetes mellitus. 2017;20(1):13-41. (In Russ.)] doi: 10.14341/DM8664
16. Butler JM, Guthrie SM, Koc M, et al. SDF-1 is both necessary and sufficient to promote proliferative retinopathy. J Clin Invest. 2005;115(1):86–93. doi: 10.1172/JCI22869
17. Dietrich N, Kolibabka M, Busch S, et al. The DPP4 Inhibitor Linagliptin Protects from Experimental Diabetic Retinopathy. PLoS One. 2016;11(12):e0167853. doi: 10.1371/journal.pone.0167853
18. Kolaczynski WM, Hankins M, Ong SH, et al. Microvascular Outcomes in Patients with Type 2 Diabetes Treated with Vildagliptin vs. Sulfonylurea: A Retrospective Study Using German Electronic Medical Records. Diabetes Ther. 2016;7(3):483-496. doi: 10.1007/s13300-016-0177-8
19. Wanner C, Lee C, Woerle HJ, et al. Empagliflozin and microvascular outcomes in EMPA-REG OUTCOME. Diabetologia. 2016;59(Suppl 1):483-484. doi: 10.1007/s00125-016-4046-9
20. Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405-412. doi: 10.1136/bmj.321.7258.405
21. Juutilainen A, Lehto S, Ronnemaa T, et al. Retinopathy predicts cardiovascular mortality in type 2 diabetic men and women. Diabetes Care. 2007;30(2):292–299. doi: 10.2337/dc06-1747
22. Emerging Risk Factors Collaboration; Di Angelantonio E, Gao P, et al. Glycated hemoglobin measurement and prediction of cardiovascular disease. JAMA. 2014;311(12):1225–33. doi: 10.1001/jama.2014.1873
23. Boussageon R, Bejan-Angoulvant T, Saadatian-Elahi M, et al. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ. 2011;343:d4169. doi: 10.1136/bmj.d4169
24. Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Eng J Med. 2003;348(5):383–393. doi: 10.1056/NEJMoa021778
25. Guidance for Industry. Diabetes mellitus—evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. 2008. Silver Spring: U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER); 2008. Available from: https://www.fda.gov/downloads/Drugs/.../Guidances/ucm071627.pdf.
26. Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Eng J Med. 2013;369(14):1317–1326. doi: 10.1056/NEJMoa1307684
27. White WB, Cannon CP, Heller SR, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Eng J Med. 2013;369(14):1327–1335. doi: 10.1056/NEJMoa1305889
28. Green JB, Bethel MA, Armstrong PW, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Eng J Med. 2015;373(3):232–242. doi: 10.1056/NEJMoa1501352
29. Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Eng J Med. 2015;373(23):2247–2257. doi: 10.1056/NEJMoa1509225
30. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Eng J Med. 2016;375(4):311–322. doi: 10.1056/NEJMoa1603827
31. Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–1844. doi: 10.1056/NEJMoa1607141
32. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Eng J Med. 2015;373(22):2117–2128. doi: 10.1056/NEJMoa1504720
33. Дедов И.И., Шестакова М.В. Феномен «метаболической памяти» в прогнозировании риска развития сосудистых осложнений при сахарном диабете // Терапевтический архив. – 2015. – Т. 87. – №10. – С. 4-10. [Dedov II, Shestakova MV. The metabolic memory phenomenon in predicting a risk for vascular complications in diabetes mellitus. Ter Arkh. 2015;87(10):4-10. doi: 10.17116/terarkh201587104-10
34. Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405-412. doi: 10.1136/bmj.321.7258.405
35. Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008; 359:1577-1589. doi: 10.1056/NEJMoa0806470
36. Action to Control Cardiovascular Risk in Diabetes Study Group; Gerstein HC, Miller ME, Byington RP, et al. Effects of Intensive Glucose Lowering in Type 2 Diabetes. N Engl J Med. 2008;358(24):2545-2559. doi: 10.1056/NEJMoa0802743
37. Mita T, Katakami N, Yoshii H, et al. Alogliptin, a Dipeptidyl Peptidase 4 Inhibitor, Prevents the Progression of Carotid Atherosclerosis in Patients With Type 2 Diabetes: The Study of Preventive Effects of Alogliptin on Diabetic Atherosclerosis (SPEAD-A). Diabetes Care. 2016;39(1):139-148. doi: 10.2337/dc15-0781
38. Laiteerapong N, Karter AJ, Moffet HH, et al. Ten-year hemoglobin A1c trajectories and outcomes in type 2 diabetes mellitus: The Diabetes & Aging Study. J Diabetes Complications. 2017;31(1):94–100. doi: 10.1016/j.jdiacomp.2016.07.023
39. Mearns ES, Sobieraj DM, White CM, et al. Comparative efficacy and safety of antidiabetic drug regimens added to metformin monotherapy in patients with type 2 diabetes: a network meta-analysis. PLoS One. 2015;10(4):e0125879. doi: 10.1371/journal.pone.0125879
40. Lingvay I. Sodium glucose cotransporter 2 and dipeptidyl peptidase-4 inhibition: promise of a dynamic duo. Endocr Pract. 2017;23(7): 831-840. doi: 10.4158/EP161725.RA
41. Scheen AJ. DPP-4 inhibitor plus SGLT-2 inhibitor as combination therapy for type 2 diabetes: from rationale to clinical aspects. Expert Opin Drug Metab Toxicol. 2016;12(12):1407-1417. doi: 10.1080/17425255.2016.1215427
Supplementary files
|
1. Рис. 1. Дизайн исследования GRADE. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(41KB)
|
Indexing metadata ▾ |
|
2. Рис. 2. Возможное место ранней комбинированной терапии в алгоритмах помощи больным СД2 (адаптировано из [7]). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(86KB)
|
Indexing metadata ▾ |
Review
For citations:
Shestakova E.A. Second line therapy in type 2 diabetes: legacy effect activation. Diabetes mellitus. 2017;20(5):356-362. (In Russ.)