Preview

Diabetes mellitus

Advanced search

Multidimensional effects of metformin in patients with type 2 diabetes

Abstract

In modern algorithms for the treatment of type 2 diabetes, metformin is positioned as a first-line drug, which, when the disease progresses, is universally combined with other groups of hypoglycemic drugs, including insulin. Review of literature demonstrates the multifaceted effects of metformin with its efficacy and extensive safety range, allowing the drug to be used not only for glycemic control but also for the management of cardiovascular risk factors. Here we present a retrospective study of whether cardiovascular safety of hypoglycemic drugs should be assessed, on the basis of which the idea of a “vulnerable patient” in the presence of diabetes can be formulated, and the necessity of joint management of such patients by an endocrinologist and cardiologist can be postulated. The mechanisms of macrovascular protection by the drug demonstrated in the UKPDS with the phenomenon of “metabolic memory” are analysed along with a discussion regarding their lipid-lowering and antisclerotic effects using modern analytical reviews. The features of the action of long form of the drug (Glucophage Long) are considered. The pleiotropic possibilities of metformin, the expansion of the present indications and the prospects of application as well as new hypotheses about its mechanism of action are discussed. The possible effects of the drug on the components of the “gastrointestinal tract–brain–liver” axis are discussed, and the effects of metformin on homeostasis due to the effect on the microbiota are presented.

About the Authors

Lyudmila A. Ruyatkina

Novosibirsk State Medical University


Russian Federation

MD, PhD, Professor


Competing Interests:

The authors do not declare a conflict of interest



Dmitriy S. Ruyatkin

Novosibirsk State Medical University


Russian Federation

MD, PhD


Competing Interests:

The authors do not declare a conflict of interest



References

1. Inzucchi SE, Matthews DR. Response to Comments on Inzucchi et al. Management of Hyperglycemia in Type 2 Diabetes, 2015: A Patient-Centered Approach. Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38(8):128-9. doi: 10.2337/dc15-0812.

2. Недосугова Л.В. Роль препаратов сульфонилмочевины в развитии сердечно-сосудистых осложнений при сахарном диабете 2 типа. // Сахарный диабет. – 2013. – Т. 16. – №2. – С. 26-35. [Nedosugova LV. Sulfonylureas and cardiovascular complications of type 2 diabetes mellitus. Diabetes mellitus. 2013;16(2):26–35 (in Russ.)] doi: 10.14341/2072-0351-3753

3. Pernicova I, Korbonits V. Metformin – mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014;10(3):143-56. doi: 10.1038/nrendo.2013.256

4. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352(9131):854-865. doi: 10.1016/S0140-6736(98)07037-8

5. Batchuluun B, Sonoda N, Takayanagi R, Inoguchi T. The Cardiovascular Effects of Metformin: Conventional and New Insights. J Endocrinol Diabetes Obes. 2014;2(2):1035.

6. Rojas LB, Gomes MB. Metformin: an old but still the best treatment for type 2 diabetes. Diabetol Metab Syndr. 2013;5(1):6. doi: 10.1186/1758-5996-5-6.

7. Hanefeld M, Fischer S, Julius U, et al. Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year follow-up. Diabetologia. 1996;39(12):1577-1583. doi: 10.1007/s001250050617

8. Laakso M. Benefits of Strict Glucose and Blood Pressure Control in Type 2 Diabetes. Lessons From the UK Prospective Diabetes Study. Circulation. 1999;99(4):461-462. doi: 10.1161/01.CIR.99.4.461

9. Parati G, Bilo G, Ochoa JT. Benefits of Tight Blood Pressure Control in Diabetic Patients With Hypertension. Diabetes Care. 2011;34 suppl 2:S297-S303. doi: 10.2337/dc11-s243

10. Руяткина Л.А., Руяткин Д.С., Овсянникова А.К. Проблемы сахароснижающей терапии у пациентов с сахарным диабетом 2 типа при остром коронарном синдроме. // Медицинский совет. – 2016. – Т. 4. – №4. – С. 102-110. [Ruyatkina LA, Ruyatkin DS, Ovsyannikova AK. Problems of hypoglycemic therapy in diabetic patients with acute coronary syndrome. Meditsinsky sovet. 2016;4(4):102-110. doi: 10.21518/2079-701X-2016-4-100-109

11. Bailey CJ, Campbell IW, Chan JCN, Davidson JA, Howlett HCS, Ritz P, editors. Metformin the gold standard – a scientific handbook. Birmingham: Wiley; 2007.

12. Alessi MC, Juhan-Vague I. PAI–1 and the metabolic syndrome: the links, causes and consequences. Arterioscler Thromb Vasc Biol. 2006;26(10):2200-2207. doi: 10.1161/01.ATV.0000242905.41404.68

13. Lexis CP, van der Horst IC, Lipsic E, Wieringa WG. Effect of metformin on left ventricular function after acute myocardial infarction in patients without diabetes: the GIPS-III randomized clinical trial. JAMA. 2014;311(15):1526-35. doi: 10.1001/jama.2014.3315

14. Boussageon R, Supper I, Bejan-Angoulvant T, et al. Reappraisal of metformin efficacy in the treatment of type 2 diabetes: a meta-analysis of randomised controlled trials. PLoS Med. 2012;9(4):e1001204. doi: 10.1371/journal.pmed.1001204.

15. Varvaki Rados D, Catani Pinto L, Reck Remonti L, et al. The Association between Sulfonylurea Use and All-Cause and Cardiovascular Mortality: A Meta-Analysis with Trial Sequential Analysis of Randomized Clinical Trials. PLoS Med. 2016;13(6):e1001992. doi: 10.1371/journal.pmed.1001992. eCollection 2016.

16. Roumie CL, Min JY, Greevy RF, et al. Risk of hypoglycemia following intensification of metformin treatment with insulin versus sulfonylurea. CMAJ. 2016;188(6):E104-112. doi: 10.1503/cmaj.150904

17. Desouza C, Bolli G, Fonseca V. Hypoglycemia, Diabetes, and Cardiovascular Events. Diabetes Care. 2010;33(6):1389-1394. doi: 10.2337/dc09-2082.

18. Руяткина Л.А., Руяткин Д.С., Березовская Г.А. Гипогликемии в патогенезе сердечно-сосудистого риска. // Фарматека. – 2013. – № 6. – С. 15-21. [Ruyatkina LA, Ruyatkin DS, Berezovskaya GA. Hypoglycemia in the pathogenesis of cardiovascular risk. Pharmateca. 2013;6:15-21. (in Russ.)]

19. van Dalem J, Brouwers MC, Stehouwer CD, et al. Risk of hypoglycaemia in users of sulphonylureas compared with metformin in relation to renal function and sulphonylurea metabolite group: population based cohort study. BMJ. 2016;354:i3625. doi: 10.1136/bmj.i3625

20. Riddle M, Umpierrez G, DiGenio A, et al. Contributions of basal and postprandial hyperglycemia over a wide range of A1C levels before and after treatment intensification in type 2 diabetes. Diabetes Care. 2011;34(12):2508-2514. doi: 10.2337/dc11-0632

21. Ali S, Fonseca V. Overview of metformin: special focus on metformin extended release. Expert Opin Pharmacother. 2012;13(12):1797-1805. doi: 10.1517/14656566.2012.705829

22. Schwartz S, Fonseca V, Berner B, et al. Efficacy, tolerability, and safety of a novel once-daily extended-release metformin in patients with type 2 diabetes. Diabetes Care. 2006;29(4):759-764. doi: 10.2337/diacare.29.04.06.dc05-1967

23. Jabbour S, Ziring B. Advantages of extended-release metformin in patients with type 2 diabetes mellitus. Postgrad Med. 2011;123(1):15-23. doi: 10.3810/pgm.2011.01.2241

24. Ceriello A, Davidson J, Hanefeld M, et al. Postprandial hyperglycaemia and cardiovascular complications of diabetes: an update. Nutr Metab Cardiovasc Dis. 2006;16(7):453-6. doi: 10.1016/j.numecd.2006.05.006

25. Климонтов В.В., Маякина Н.Е. Вариабельность гликемии при сахарном диабете: инструмент для оценки качества гликемического контроля и риска осложнений. // Сахарный диабет. – 2014. – Т. 17. – № 2. – C. 76-82. [Klimontov VV, Myakina NE. Glycaemic variability in diabetes: a tool for assessing the quality of glycaemic control and the risk of complications. Diabetes mellitus. 2014;17(2):76-82. (in Russ.)] doi: 10.14341/DM2014276-82

26. Kumar J, Kumar S, Vandana, et al. Compliance and efficacy of extended release Metformin andimmediate release thrice daily Metformin in type-2 Diabetes Mellitus – A comparative study. IOSR Journal of Dental and Medical Sciences. 2014;13(7):19-22. doi: 10.9790/0853-13731922

27. Su G, Mi S, Li Z, et al. Prognostic value of early in-hospital glycemic excursion in elderly patients with acute myocardialinfarction. Cardiovasc Diabetol. 2013;12:33. doi: 10.1186/1475-2840-12-33

28. Gohbara M, Hibi K, Mitsuhashi T, et al. Glycemic Variability on Continuous Glucose Moni-toring System Correlates With Non-Culprit Vessel Coronary Plaque Vulnerability in Patients With First-Episode Acute Coronary Syndrome – Optical Coherence Tomography Study. Circ J. 2015;80(1):202-210. doi: 10.1253/circj.CJ-15-0790

29. Asanuma H, Kitakaze M. Glycemic Variability Predicts Rapid Progression of Non-Culprit Lesions in Patients With Acute Coronary Syndrome. Circ J. 2015;79(10):2114-2115. doi: 10.1253/circj.CJ-15-0919

30. Scheen AJ, Paquot N. Metformin revisited: a critical review of the benefit-risk balance in at-risk patients with type 2 diabetes. Diabetes Metab. 2013;39(3):179-90. doi: 10.1016/j.diabet.2013.02.006

31. Crowley MJ, Diamantidis CJ, McDuffie JR, et al. Clinical Outcomes of Metformin Use in Populations With Chronic Kidney Disease, Congestive Heart Failure, or Chronic Liver Disease: A Systematic Review. Ann Intern Med. 2017;166(3):191-200. doi: 10.7326/M16-1901

32. Aguilar D, Chan W, Bozkurt B, et al. Metformin Use and Mortality in Ambulatory Patients with Diabetes and Heart Failure. Circ Heart Fail. 2011;4(1):53–58. doi: 10.1161/CIRCHEARTFAILURE.110.952556

33. Papanas N, Maltezos E, Mikhailidis DP. Metformin and heart failure: never say never again. Expert Opin Pharmacother. 2012;13(1):1-8. doi: 10.1517/14656566.2012.638283

34. Writing Committee Members, Yancy CW, Jessup M, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):e240-327. doi: 10.1161/CIR.0b013e31829e8776

35. Qaseem A, Barry MJ, Humphrey LL, Forciea MA. Clinical Guidelines Committee of the American College of Physicians.Oral Pharmacologic Treatment of Type 2 Diabetes Mellitus: A Clinical Practice Guideline Update From the American College of Physicians. Ann Intern Med. 2017;166(4):279-290. doi: 10.7326/M16-1860

36. Frigy A, Germán-Salló M, Máthé L, Szabó M. The safety of anti-diabetic drugs in heart failure. Orv Hetil. 2017;158(5):163-171. doi: 10.1556/650.2017.30652

37. Fisman EZ, Tenenbaum A. Antidiabetic treatment with gliptins: focus on cardiovascular effects and outcomes. Cardiovasc Diabetol. 2015;14:129. doi: 10.1186/s12933-015-0294-0

38. Петунина Н.А., Терехова А.Л. Алоглиптин – новый представитель класса ингибиторов ДПП-4 // Ожирение и метаболизм. – 2014. – Т. 11. – № 4. – C. 25-31. [Petunina NA, Terekhova AL. Alogliptin – the new member of DPP-4 inhibitors class. Obesity and metabolism. 2014;11(4):25-31. (in Russ.)] doi: 10.14341/omet2014425-31

39. White WB, Kupfer S, Zannad F, et al. Cardiovascular mortality in patients with type 2 diabetes and recent acute coronary syndromes from the EXAMINE trial. Diabetes Care. 2016;39(7):1267–1273. doi: 10.2337/dc16-0303

40. Szalat A, Raz I. Gender-specific care of diabetes mellitus: particular considerations in the management of diabetic women. Diabetes Obes Metab. 2008;10(12):1135–1156. doi: 10.1111/j.1463-1326.2008.00896.x

41. Maric С. Risk factors for cardiovascular disease in women with diabetes. Gend Med. 2010;7(6):551–556. doi: 10.1016/j.genm.2010.11.007

42. Yamabe N, Kang KS, Zhu BT. Beneficial effect of 17β-estradiol on hyperglycemia and islet β-cell functions in a streptozotocin-induced diabetic rat model. Toxicol Appl Pharmacol. 2010;249(1):76-85. doi: 10.1016/j.taap.2010.08.020

43. Nadal A, Alonso-Magdalena P, Soriano S, et al. The pancreatic beta-cell as a target of estrogens and xenoestrogens: Implications for blood glucose homeostasis and diabetes. Mol Cell Endocrinol. 2009;304(1-2):63-68. doi: 10.1016/j.mce.2009.02.016

44. Song YM, Lee YH, Kim JW, et al. Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway. Autophagy. 2015;11(1):46-59. doi: 10.4161/15548627.2014.984271

45. Foretz M, Viollet B. Therapy: Metformin takes a new route to clinical efficacy. Nat Rev Endocrinol. 2015;11(7):390-2. doi: 10.1038/nrendo.2015.85

46. Sivalingam VN, Myers J, Nicholas S, et al. Metformin in Reproductive Health, Pregnancy and Gynaecological Cancer: Established and Emerging Indications. Hum Reprod Update. 2014;20(6):853-868. doi: 10.1093/humupd/dmu037

47. Lyons MR, Peterson LR, McGill JB, et al. Impact of sex on the heart's metabolic and functional responses to diabetic therapies. Am J Physiol Heart Circ Physiol. 2013;305(11):H1584-1591. doi: 10.1152/ajpheart.00420.2013

48. Solini A, Penno G, Bonora E, et al. Age, renal dysfunction, cardiovascular disease, and antihyperglycemic treatment in type 2 diabetes mellitus: findings from the Renal Insufficiency and Cardiovascular Events Italian Multicenter Study. J Am Geriatr Soc. 2013;61(8):1253-1261. doi: 10.1111/jgs.12381

49. Christiansen CF, Ehrenstein V, Heide-Jørgensen U, et al. Metformin initiation and renal impairment: a cohort study in Denmark and the UK. BMJ Open. 2015;5(9):e008531. doi: 10.1136/bmjopen-2015-008531

50. Franch-Nadal J, Roura-Olmeda P, Benito-Badorrey B, et al. Metabolic control and cardiovascular risk factors in type 2 diabetes mellitus patients according to diabetes duration. Fam Pract. 2015;32(1):27-34. doi: 10.1093/fampra/cmu048

51. Cameron AR, Morrison VL, Levin D, et al. Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status. Circ Res. 2016;119(5):652-665. doi: 10.1161/CIRCRESAHA.116.308445

52. Chang SH, Wu LS, Chiou MJ, et al. Association of metformin with lower atrial fibrillation risk among patients with type 2 diabetes mellitus: a population-based dynamic cohort and in vitro studies. Cardiovasc Diabetol. 2014;13:123. doi: 10.1186/s12933-014-0123-x

53. Moon JS, Karunakaran U, Elumalai S, et al. Metformin prevents glucotoxicity by alleviating oxidative and ER stress-induced CD36 expression in pancreatic beta cells. Diabetes Complications. 2017;31(1):21-30. doi: 10.1016/j.jdiacomp.2016.09.001

54. Yoon JS, Moon JS, Kim YW, et al. The Glucotoxicity Protecting Effect of Ezetimibe in Pancreatic Beta Cells via Inhibition of CD36. Korean Med Sci. 2016;31(4):547-552. doi: 10.3346/jkms.2016.31.4.547

55. Yue R, Fu W, Liao X, et al. Metformin promotes the survival of transplanted cardiosphere-derived cells thereby enhancing their therapeutic effect against myocardial infarction. Stem Cell Res Ther. 2017;8(1):17. doi: 10.1186/s13287-017-0476-7

56. Sirtori CR, Tremoli E, Paoletti R. New strategies in the development of anti-atherosclerotic drugs. Artery. 1980;8(6):507-518.

57. Grzybowska M, Bober J, Olszewska M. Metformin – mechanisms of action and use for the treatment of type 2 diabetes mellitus. Postepy Hig Med Dosw (Online). 2011;65:277-285. doi: 10.5604/17322693.941655

58. Kurdi A, De Meyer GR, Martinet W. Potential therapeutic effects of mTOR inhibition in atherosclerosis. Br J Clin Pharmacol. 2016;82(5):1267-1279. doi: 10.1111/bcp.12820

59. Luo F, Guo Y, Ruan G, Li X. Metformin promotes cholesterol efflux in macrophages by up-regulating FGF21 expression: a novel anti-atherosclerotic mechanism. Lipids Health Dis. 2016;15:109. doi: 10.1186/s12944-016-0281-9

60. Preiss D, Lloyd SM, Ford I, et al. Metformin for non-diabetic patients with coronary heart disease (the CAMERA study): a randomised controlled trial. Lancet Diabetes Endocrinol. 2014;2(2):116-124. doi: 10.1016/S2213-8587(13)70152-9

61. Pryor R, Cabreiro F. Repurposing metformin: an old drug with new tricks in its binding pockets. Biochem J. 2015;471(3):307-322. doi: 10.1042/BJ20150497

62. Jalving M, Gietema JA, Lefrandt JD, et al. Metformin: taking away the candy for cancer? Eur J.Cancer. 2010;46(13):2369-2380. doi: 10.1016/j.ejca.2010.06.012

63. Du L, Wang M, Kang Y, et al. Prognostic role of metformin intake in diabetic patients with colorectal cancer: An updated qualitative evidence of cohort studies. Oncotarget. 2017;8(16):26448-26459. doi: 10.18632/oncotarget.14688

64. Wan G, Yu X, Chen P, et al. Metformin therapy associated with survival benefit in lung cancer patients with diabetes. Oncotarget. 2016;7(24):35437-35445. doi: 10.18632/oncotarget.8881

65. Ma SJ, Zheng YX, Zhou PC, et al. Metformin use improves survival of diabetic liver cancer patients: systematic review and meta-analysis. Oncotarget. 2016;7(40):66202-66211. doi: 10.18632/oncotarget.11033

66. Sayyid RK, Fleshner NE. Potential role for metformin in urologic oncology. Investig Clin Urol. 2016;57(3):157-64. doi: 10.4111/icu.2016.57.3.157

67. Imai A, Ichigo S, Matsunami K, et al. Clinical benefits of metformin in gynecologic oncology. Oncol Lett. 2015;10(2):577-582. doi: 10.3892/ol.2015.3262

68. van der Aa MP, Elst MA, van Mil EG, et al. Metformin: an efficacy, safety and pharmacokinetic study on the short-term and long-term use in obese children and adolescents – study protocol of a randomized controlled study. Trials. 2014;15:207. doi: 10.1186/1745-6215-15-207

69. Hostalek U., Gwilt M., Hildemann S. Therapeutic Use of Metformin in Prediabetes and Diabetes Prevention. Drugs. 2015;75(10):1071-94. doi: 10.1007/s40265-015-0416-8

70. Flórez H. Steps toward the primary prevention of type II diabetes mellitus. Various epidemiological considerations. Invest Clin. 1997;38(1):39-52.

71. Al Khalifah RA, Alnhdi A, Alghar H, et al. The effect of adding metformin to insulin therapy for type 1 diabetes mellitus children: A systematic review and meta-analysis. Pediatr Diabetes. 2017 (in press). doi: 10.1111/pedi.12493

72. Feng Y, Yang H. Metformin – a potentially effective drug for gestational diabetes mellitus: a systematic review and meta-analysis. J Matern Fetal Neonatal Med. 2016;30(15):1874-1881. doi: 10.1080/14767058.2016.1228061

73. Gray SG, McGuire T, Cohen N, Little PJ. The emerging role of Metformin in Gestational Diabetes Mellitus. Diabetes Obes Metab. 2017;19(6):765-772. doi: 10.1111/dom.12893

74. Yang JY, Kweon MN. The gut microbiota: a key regulator of metabolic diseases. BMB Rep. 2016;49(10):536-541. doi: 10.5483/BMBRep.2016.49.10.144

75. Tilg H, Moschen AR. Microbiota and Diabetes: An Evolving Relationship. Gut. 2014;63(9):1513-1521. doi: 10.1136/gutjnl-2014-306928

76. Hur KY, Lee MS. New mechanisms of metformin action: Focusing on mitochondria and the gut. J Diabetes Investig. 2015;6(6):600–609. doi:10.1111/jdi.12328

77. Martin-Montalvo A, Mercken EM, Mitchell SJ, et al. Metformin improves healthspan and lifespan in mice. Nat Commun. 2013;4:2192. doi: 10.1038/ncomms3192.

78. Xu J, Rajaratnam R. Cardiovascular safety of non-insulin pharmacotherapy for type 2 diabetes. Cardiovasc Diabetol. 2017;16(1):18. doi: 10.1186/s12933-017-0499-5


Supplementary files

1. Рис. 1. Структура дулаглутида.
Subject
Type Исследовательские инструменты
View (94KB)    
Indexing metadata ▾
2. Рис. 2. Изменение HbA1c от исходного уровня в первичной конечной точке в исследованиях AWARD 1–6.
Subject
Type Исследовательские инструменты
View (53KB)    
Indexing metadata ▾
3. Рис. 3. Доли пациентов, достигших целевого HbA1c<7% в финальной конечной точке в исследованиях AWARD 1–6.
Subject
Type Исследовательские инструменты
View (39KB)    
Indexing metadata ▾
4. Рис. 4. Изменение массы тела от исходной в первичной конечной точке в исследованиях AWARD 1–6
Subject
Type Исследовательские инструменты
View (43KB)    
Indexing metadata ▾

Review

For citations:


Ruyatkina L.A., Ruyatkin D.S. Multidimensional effects of metformin in patients with type 2 diabetes. Diabetes mellitus. 2017;20(3):210-219. (In Russ.)

Views: 3934


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)