Preview

Diabetes mellitus

Advanced search

Hyperglycemia and possible mechanisms of β-cell damage in patients with COVID-19

Abstract

Progressive decrease in the weight and functional reserve of β-cells is one of the main pathogenetic mechanisms of development of type 2 diabetes mellitus (DM2). The rate of progression of these processes is strictly individual, which largely determines the course of DM2 and the effectiveness of the therapy. As a rule, apoptosis and necrosis are the main mechanisms of β-cell damage and death in CD2. At the same time, recent studies allow us to consider the destruction and death of β-cells as the outcome of other types of programmed cell death (PCG), the role of innate immunity in the Genesis of CD2 IS actively discussed. This article provides an overview of the data of domestic and foreign literature of recent years regarding the molecular, intracellular characteristics of different types of β-cell PCG in CD2. The results of studies aimed at studying the possible factors and processes leading to their launch are presented.

About the Authors

Z. A. Kalmykova
Endocrinology Research Centre
Russian Federation

MD, PhD student



I. V. Kononenko
Endocrinology Research Centre
Russian Federation

MD, PhD, leading research associate



I. A. Sklyanik
Endocrinology Research Centre
Russian Federation

MD, research associate



M. V. Shestakova
Endocrinology Research Centre
Russian Federation

MD, PhD, Professor



N. G. Mokrysheva
Endocrinology Research Centre
Russian Federation

MD, PhD, Professor



References

1. World Health Organization. Coronavirus disease (COVID-2019) situation reports-67. Avalable from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200327-sitrep-67-covid-19.pdf?sfvrsn=b65f68eb_4

2. Brufsky A. Hyperglycemia, hydroxychloroquine, and the COVID-19 pandemic. J Med Virol. 2020;92(7):770-775. doi: https://doi.org/10.1002/jmv.25887

3. Marik PE, Bellomo R. Stress hyperglycemia: an essential survival response! Crit Care. 2013;17(2):305. doi: https://doi.org/10.1186/cc12514

4. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280.e8. doi: https://doi.org/10.1016/j.cell.2020.02.052

5. Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47(3):193-199. doi: https://doi.org/10.1007/s00592-009-0109-4

6. Yao XH, Li TY, He ZC, et al. [A pathological report of three COVID-19 cases by minimal invasive autopsies. (In Chinese)]. Zhonghua Bing Li Xue Za Zhi = Chinese J Pathol. 2020;49(5):411-417. doi: https://doi.org/10.3760/cma.j.cn112151-20200312-00193

7. Bode B, Garrett V, Messler J, et al. Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States. J Diabetes Sci Technol. 2020;14(4):813-821. doi: https://doi.org/10.1177/1932296820924469

8. Thaweerat W. Current evidence on pancreatic involvement in SARS-CoV-2 infection. Pancreatology. 2020;S1424-3903(20)30184-8. doi: https://doi.org/10.1016/j.pan.2020.05.015

9. Iacobellis G, Penaherrera CA, Bermudez LE, et al. Admission hyperglycemia and radiological findings of SARS-CoV2 in patients with and without diabetes. Diabetes Res Clin Pract. 2020;164:108185. doi: https://doi.org/10.1016/j.diabres.2020.108185

10. Chee YJ, Ng SJ, Yeoh E. Diabetic ketoacidosis precipitated by Covid-19 in a patient with newly diagnosed diabetes mellitus. Diabetes Res Clin Pract. 2020;164:108166. doi: https://doi.org/10.1016/j.diabres.2020.108166

11. Wang Z, Du Z, Zhu F. Glycosylated hemoglobin is associated with systemic inflammation, hypercoagulability, and prognosis of COVID-19 patients. Diabetes Res Clin Pract. 2020;164:108214. doi: https://doi.org/10.1016/j.diabres.2020.108214

12. Gallagher EJ, Le Roith D, Bloomgarden Z. Review of hemoglobin A1c in the management of diabetes. J Diabetes. 2009;1(1):9-17. doi: https://doi.org/10.1111/j.1753-0407.2009.00009.x

13. Naymagon L, Berwick S, Kessler A, et al. The emergence of methemoglobinemia amidst the COVID-19 pandemic. Am J Hematol. 2020:ajh.25868. doi: https://doi.org/10.1002/ajh.25868

14. Op de Beeck A, Eizirik DL. Viral infections in type 1 diabetes mellitus − why the β cells? Nat Rev Endocrinol. 2016;12(5):263-273. doi: https://doi.org/10.1038/nrendo.2016.30

15. Jaeckel E, Manns M, Herrath M. Viruses and diabetes. Ann N Y Acad Sci. 2002;958(1):7-25. doi: https://doi.org/10.1111/j.1749-6632.2002.tb02943.x

16. Szopa TM, Titchener PA, Portwood ND, et al. Diabetes mellitus due to viruses − some recent developments. Diabetologia. 1993;36(8):687-695. doi: https://doi.org/10.1007/BF00401138

17. Devendra D, Liu E, Eisenbarth GS. Type 1 diabetes: recent developments. BMJ. 2004;328(7442):750-754. doi: https://doi.org/10.1136/bmj.328.7442.750

18. Yoon JW, Austin M, Onodera T, et al. Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med. 1979;300(21):1173-1179. doi: https://doi.org/10.1056/NEJM197905243002102

19. Lönnrot M, Lynch KF, Elding Larsson H, et al. Respiratory infections are temporally associated with initiation of type 1 diabetes autoimmunity: the TEDDY study. Diabetologia. 2017;60(10):1931-1940. doi: https://doi.org/10.1007/s00125-017-4365-5

20. Du L, He Y, Zhou Y, et al. The spike protein of SARS-CoV − a target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7(3):226-236. doi: https://doi.org/10.1038/nrmicro2090

21. Zou X, Chen K, Zou J, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185-192. doi: https://doi.org/10.1007/s11684-020-0754-0

22. Xu H, Zhong L, Deng J, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):8. doi: https://doi.org/10.1038/s41368-020-0074-x

23. Rabi FA, Al Zoubi MS, Kasasbeh GA, et al. SARS-CoV-2 and Coronavirus Disease 2019: what we know so far. Pathogens. 2020;9(3):231. doi: https://doi.org/10.3390/pathogens9030231

24. Simões e Silva A, Silveira K, Ferreira A, et al. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol. 2013;169(3):477-492. doi: https://doi.org/10.1111/bph.12159

25. Batlle D, Jose Soler M, Ye M. ACE2 and diabetes: ACE of ACEs? Diabetes. 2010;59(12):2994-2996. doi: https://doi.org/10.2337/db10-1205

26. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. J Infect. 2020;80(6):607-613. doi: https://doi.org/10.1016/j.jinf.2020.03.037

27. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-1034. doi: https://doi.org/10.1016/S0140-6736(20)30628-0

28. Emanuela F, Grazia M, Marco DR, et al. Inflammation as a Link between Obesity and Metabolic Syndrome. J Nutr Metab. 2012;2012:476380. doi: https://doi.org/10.1155/2012/476380

29. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease and therapeutics. Nat Med. 2015;21(7):677-668. doi: https://doi.org/10.1038/nm.3893

30. Абатуров А.Е., Волосовец А.П., Юлиш Е.И. Роль NOD-подобных рецепторов в рекогниции патоген-ассоциированных молекулярных структур инфекционных патогенных агентов и развитии воспаления. Протеины NLR семейства, участвующие в регуляции процесса воспаления и иммунного ответа // Здоровье ребенка. — 2013. — № 5. — С. 150–155. [Abaturov AYe, Volosovets AP, Yulish YeI. The role of NOD-like receptors in recognition of pathogen-associated molecular patterns of infectious pathogens and in development of inflammation. Part 4. NLR family proteins are involved in the regulation of process of inflammation and immune response. Zdorov’e rebenka. 2013;(5):150-155. (In Russ.)]

31. Мельниченко Г.А., Глинкина И.В., Суровцева Д.М. Другие типы диабета: контринсулярные гормоны и генетическая предрасположенность, новые возможности диагностики и лечения // Вестник РАМН. — 2012. — Т. 67. — №1. — С. 50–53. [Melnichenko GA, Glinkina IV, Surovceva DM. «Other types» of diabetes: contra-insular hormones and genetic predisposition, new horizons of diagnostics and treatment. Annals of the Russian academy of medical sciences. 2012;67(1):50-53. (In Russ.)]

32. Калмыкова З.А., Кононенко И.В., Смирнова О.М., и др. Сигнальные пути гибели β-клеток при сахарном диабете 2 типа: роль врожденного иммунитета // Сахарный диабет. − 2020. – Т. 23. − № 2. – С. 174−184. [Kalmykova ZA, Kononenko IV, Smirnova OM, et al. Signaling pathways of β-cell death in type 2 diabetes: the role of innate immunity. Diabetes Mellitus. 2020;23(2):174-184. (In Russ.)]. doi: https://doi.org/10.14341/DM10242

33. World Health Organization. Classification of diabetes mellitus. WHO; 2019. Available from: https://apps.who.int/iris/handle/10665/325182


Supplementary files

1. Picture 1
Subject
Type author.submit.suppFile.figureResearchMaterials
View (17KB)    
Indexing metadata ▾
2. Picture 2
Subject
Type author.submit.suppFile.figureAuthorProfileImage
View (17KB)    
Indexing metadata ▾
3. Fig. 1. The life cycle of SARS-CoV [20].
Subject
Type Other
View (453KB)    
Indexing metadata ▾
4. Fig. 2. Mechanism of protective effect of angiotensin-converting enzyme type 2 on pancreatic β-cells [25].
Subject
Type Other
View (202KB)    
Indexing metadata ▾

Review

For citations:


Kalmykova Z.A., Kononenko I.V., Sklyanik I.A., Shestakova M.V., Mokrysheva N.G. Hyperglycemia and possible mechanisms of β-cell damage in patients with COVID-19. Diabetes mellitus. 2020;23(3):229-234. (In Russ.)

Views: 13549


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)