The relationships between bone turnover markers and bone mineral density in postmenopausal type 2 diabetic women
https://doi.org/10.14341/DM8008
Abstract
Aim. To determine the relationships between bone remodelling markers and bone mineral density (BMD), metabolic parameters and total body composition (TBC) in postmenopausal women with type 2 diabetes (T2D).
Materials and methods. The study included 140 women who were diagnosed with T2D more than five years prior. The control group included 20 postmenopausal nondiabetic women with normal BMD. The BMD and TBC parameters were assessed by dual X-ray absorptiometry. Based on their T-scores, T2D women were divided into the following groups: normal BMD (n = 50), osteopenia (n = 50) and osteoporosis (n = 40). Serum levels of bone formation markers [osteocalcin and type 1 C-terminal collagen propeptide (CICP), osteoprotegerin (an inhibitor of bone resorption), parathyroid hormone (PHT) and urinary excretion of C-terminal telopeptides of type 1 collagen (alpha-CrossLaps, or CTX-I; a bone resorption marker)] were determined by ELISA.
Results. Osteocalcin levels were decreased in all groups of T2D women (all P < 0.0002), without any differences between groups. Osteoprotegerin levels were reduced in all patient groups but was significantly lower in diabetic women with osteoporosis and osteopenia compared to those with normal BMD (P = 0.003 and P = 0.01, respectively). Women with osteoporosis had higher urinary CTX-I excretion than control and diabetic women with normal BMD (P = 0.01 and P = 0.01, respectively). CICP levels did not differ between groups. PHT concentrations were increased in diabetic women (P < 0.0001), without any differences between groups. After multiple regression analysis, BMI, age and CTX-I excretion were all associated with lumbar BMD (R2 = 0.38, P = 0.0007), whereas age, BMI, osteoprotegerin levels and CTX-I excretion were all predictive of BMD at the proximal femur (R2 = 0.44, P = 0.00003). There was no relationship between bone remodelling markers and HbA1c, lipid metabolism or TBC.
Conclusions. In postmenopausal T2D women, osteoporosis is associated with decreased serum osteoprotegerin levels and enhanced urinary CTX-I excretion. The data do not support the existence of an interrelationship between bone remodelling markers, metabolic parameters and TBC in postmenopausal women with T2D.
Keywords
About the Authors
Vadim V. KlimontovRussian Federation
MD, PhD, Dr. Med. Sci., Professor, Deputy Director for Science, Head of the Laboratory of Endocrinology
Competing Interests: No conflict of interest
Olga N. Fazullina
Russian Federation
Reseacher, Laboratory of Endocrinology
Competing Interests: No conflict of interest
Alexander P. Lykov
Russian Federation
Senior Reseacher, Laboratory of Cell Technology
Competing Interests: No conflict of interest
Vladimir I. Konenkov
Russian Federation
MD, PhD, Professor, academician of Russian Academy of Sciences
Competing Interests: No conflict of interest
References
1. Yamaguchi T, Sugimoto T. Bone metabolism and fracture risk in type 2 diabetes mellitus [Review]. Endoc J. 2011;58(8):613-624. doi: 10.1507/endocrj.EJ11-0063
2. Oei L, Zillikens MC, Dehghan A, et al. High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam Study. Diabetes Care. 2013;36(6):1619-1628. doi: 10.2337/dc12-1188
3. Ma L, Oei L, Jiang L, et al. Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol. 2012;27(5):319-332. doi: 10.1007/s10654-012-9674-x
4. Tanaka S, Kuroda T, Saito M, Shiraki M. Overweight/obesity and underweight are both risk factors for osteoporotic fractures at different sites in Japanese postmenopausal women. Osteoporos Int. 2013;24(1):69-76. doi: 10.1007/s00198-012-2209-1
5. Rubin MR. Bone cells and bone turnover in diabetes mellitus. Curr Osteoporos Rep. 2015;13(3):186-191. doi: 10.1007/s11914-015-0265-0
6. Chen H, Li X, Yue R, et al. The effects of diabetes mellitus and diabetic nephropathy on bone and mineral metabolism in T2DM patients. Diabetes Res Clin Pract. 2013;100(2):272-276. doi: 10.1016/j.diabres.2013.03.007
7. Bhattoa HP, Onyeka U, Kalina E, et al. Bone metabolism and the 10-year probability of hip fracture and a major osteoporotic fracture using the country-specific FRAX algorithm in men over 50 years of age with type 2 diabetes mellitus: a case-control study. Clin Rheumatol. 2013;32(8):1161-1167. doi: 10.1007/s10067-013-2254-y
8. Starup-Linde J, Lykkeboe S, Gregersen S, et al. Differences in biochemical bone markers by diabetes type and the impact of glucose. Bone. 2016;83:149-155. doi: 10.1016/j.bone.2015.11.004
9. Jiajue R, Jiang Y, Wang O, et al. Suppressed bone turnover was associated with increased osteoporotic fracture risks in non-obese postmenopausal Chinese women with type 2 diabetes mellitus. Osteoporos Int. 2014;25(8):1999-2005. doi: 10.1007/s00198-014-2714-5
10. Kanazawa I. Osteocalcin as a hormone regulating glucose metabolism. World J Diabetes. 2015;6(18):1345-1354. doi: 10.4239/wjd.v6.i18.1345
11. Movahed A, Larijani B, Nabipour I, et al. Reduced serum osteocalcin concentrations are associated with type 2 diabetes mellitus and the metabolic syndrome components in postmenopausal women: the crosstalk between bone and energy metabolism. J Bone Miner Metab. 2012;30(6):683-691. doi: 10.1007/s00774-012-0367-z
12. Starup-Linde J, Eriksen SA, Lykkeboe S, et al. Biochemical markers of bone turnover in diabetes patients--a meta-analysis, and a methodological study on the effects of glucose on bone markers. Osteoporos Int. 2014;25(6):1697-1708. doi: 10.1007/s00198-014-2676-7
13. Levinger I, Seeman E, Jerums G, et al. Glucose-loading reduces bone remodeling in women and osteoblast function in vitro. Physiol Rep. 2016;4(3). doi: 10.14814/phy2.12700
14. Garcia-Hernandez A, Arzate H, Gil-Chavarria I, et al. High glucose concentrations alter the biomineralization process in human osteoblastic cells. Bone. 2012;50(1):276-288. doi: 10.1016/j.bone.2011.10.032
15. Cloos PA, Lyubimova N, Solberg H, et al. An immunoassay for measuring fragments of newly synthesized collagen type I produced during metastatic invasion of bone. Clin Lab. 2004;50(5-6):279-289.
16. Zhang M, Li Y, Ma Q, et al. Relevance of parathyroidhormone (PTH), vitamin25(OH)D3, calcitonin (CT), bonemetabolicmarkers, and bonemassdensity (BMD) in 860femalecases. Clin Exp Obstet Gynecol. 2015;42(2):129-132.
17. Chavassieux P, Portero-Muzy N, Roux JP, et al. Are Biochemical Markers of Bone Turnover Representative of Bone Histomorphometry in 370 Postmenopausal Women? J Clin Endocrinol Metab. 2015;100(12):4662-4668. doi: 10.1210/jc.2015-2957
18. Liang Y, Tan A, Liang D, et al. Low osteocalcin level is a risk factor for impaired glucose metabolism in a Chinese male population. J Diabetes Investig. 2016;7(4):522-528. doi: 10.1111/jdi.12439
19. Razzaque MS. Osteocalcin: a pivotal mediator or an innocent bystander in energy metabolism? Nephrol Dial Transplant. 2011;26(1):42-45. doi: 10.1093/ndt/gfq721
20. Paula FJA, Lanna CMM, Shuhama T, Foss MC. Effect of metabolic control on parathyroid hormone secretion in diabetic patients. Braz J Med Biol Res. 2001;34(9):1139-1145. doi: 10.1590/s0100-879x2001000900006
21. Климонтов В.В., Фазуллина О.Н. Взаимосвязь композитного состава тела с минеральной плотностью костной ткани у женщин с сахарным диабетом 2 типа в постменопаузе. // Сахарный диабет. – 2015. – Т. 17. – №1 – С.65-69. [Klimontov VV, Fazullina ON. The relationship of total body composition with bone mineral density in postmenopausal women with type 2 diabetes. Diabetes Mellitus. 2015;18(1):65-69. (In Russ)] doi: 10.14341/DM2015165-69
22. Moseley KF, Dobrosielski DA, Stewart KJ, et al. Lean mass and fat mass predict bone mineral density in middle-aged individuals with noninsulin-requiring type 2 diabetes mellitus. Clin Endocrinol (Oxf). 2011;74(5):565-571. doi: 10.1111/j.1365-2265.2010.03965.x
Supplementary files
Review
For citations:
Klimontov V.V., Fazullina O.N., Lykov A.P., Konenkov V.I. The relationships between bone turnover markers and bone mineral density in postmenopausal type 2 diabetic women. Diabetes mellitus. 2016;19(5):375-382. https://doi.org/10.14341/DM8008

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).