Incretin-based therapy: renal effects
https://doi.org/10.14341/DM7727
Abstract
Glucagon like peptide-1 (GLP-1) analogues and dipeptidyl peptidase-4 (DPP-4) inhibitors are new classes of hypoglycemic agents with numerous pleiotropic effects. The review summarises data about the influence of GLP-1 analogues and DPP-4 inhibitors on structural and functional changes in diabetic kidneys. Growing evidence indicates that the kidney is one of the loci of the effects and degradation of GLP-1. The potency of the effects of GLP-1 in diabetic kidneys can be reduced by decrease in GLP-1 receptor expression or enhancement of GLP-1 degradation. In experimental models of diabetic nephropathy and non-diabetic renal injury, GLP-1 analogues and DPP-4 inhibitors slow the development of kidney fibrosis and prevent the decline of kidney function. The mechanisms of protective effect include hyperglycaemia reduction, enhancement of sodium excretion, suppression of inflammatory and fibrogenic signalling pathways, reduction of oxidative stress and apoptosis in the kidneys. In clinical studies, the urinary albumin excretion reduction rate while using the GLP-1 analogue and DPP-4 inhibitor treatment was demonstrated in patients with type 2 diabetes. Long-term impact of these agents on renal function in diabetes needs further investigations.
About the Authors
Anton Ivanovich KorbutRussian Federation
MD, Junior Researcher, Laboratory of Endocrinology
Competing Interests: No conflict of interests
Vadim Valerievich Klimontov
Russian Federation
MD, PhD, Deputy Director for Science, Head of the Laboratory of Endocrinology
Competing Interests:
No conflict of interests
References
1. Fujita H, Morii T, Fujishima H, et al. The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney Int. 2014;85(3):579-589. doi: 10.1038/ki.2013.427.
2. Sharkovska Y, Reichetzeder C, Alter M, et al. Blood pressure and glucose independent renoprotective effects of dipeptidyl peptidase-4 inhibition in a mouse model of type-2 diabetic nephropathy. J Hypertens. 2014;32(11):2211-2223. doi: 10.1097/hjh.0000000000000328.
3. Crajoinas RO, Oricchio FT, Pessoa TD, et al. Mechanisms mediating the diuretic and natriuretic actions of the incretin hormone glucagon-like peptide-1. Am J Physiol Renal Physiol. 2011;301(2):F355-363. doi: 10.1152/ajprenal.00729.2010.
4. Jensen EP, Poulsen SS, Kissow H, et al. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow. Am J Physiol Renal Physiol. 2015;308(8):F867-877. doi: 10.1152/ajprenal.00527.2014.
5. Pyke C, Heller RS, Kirk RK, et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology. 2014;155(4):1280-1290. doi: 10.1210/en.2013-1934.
6. Thomson SC, Kashkouli A, Singh P. Glucagon-like peptide-1 receptor stimulation increases GFR and suppresses proximal reabsorption in the rat. Am J Physiol Renal Physiol. 2013;304(2):F137-144. doi: 10.1152/ajprenal.00064.2012.
7. Кутина А.В., Марина А.С., Наточин Ю.В. Натрийуретическое свойство эксенатида: высокая эффективность и локализация действия. // Экспериментальная и клиническая фармакология. 2012;75(2):22-25. [Kutina AV, Marina AS, Natochin IuV. Natriuretic effect of exenatide: high efficacy and site of action. Eksperimental’naya i klinicheskaya farmakologiya. 2012;75(2):22-25. (In Russ).] PMID: 22550855
8. Schlatter P, Beglinger C, Drewe J, Gutmann H. Glucagon-like peptide 1 receptor expression in primary porcine proximal tubular cells. Regul Pept. 2007;141(1-3):120-128. doi: 10.1016/j.regpep.2006.12.016.
9. Carraro-Lacroix LR, Malnic G, Girardi AC. Regulation of Na+/H+ exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells. Am J Physiol Renal Physiol. 2009;297(6):F1647-1655. doi: 10.1152/ajprenal.00082.2009.
10. Farah LX, Valentini V, Pessoa TD, et al. The Physiological Role of Glucagon-Like Peptide-1 in the Regulation of Renal Function. Am J Physiol Renal Physiol. 2015:ajprenal.00394.2015. doi: 10.1152/ajprenal.00394.2015.
11. Rieg T, Gerasimova M, Murray F, et al. Natriuretic effect by exendin-4, but not the DPP-4 inhibitor alogliptin, is mediated via the GLP-1 receptor and preserved in obese type 2 diabetic mice. Am J Physiol Renal Physiol. 2012;303(7):F963-F971. doi: 10.1152/ajprenal.00259.2012.
12. Gutzwiller JP, Tschopp S, Bock A, et al. Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. Jyp. 2004;89(6):3055-3061. doi: 10.1210/jc.2003-031403.
13. Skov J, Dejgaard A, Frokiær J, et al. Glucagon-like peptide-1 (GLP-1): effect on kidney hemodynamics and renin-angiotensin-aldosterone system in healthy men. J Clin Endocrinol Metab. 2013;98(4):E664-671. doi: 10.1210/jc.2012-3855.
14. Asmar A, Simonsen L, Asmar M, et al. Renal extraction and acute effects of glucagon-like peptide-1 on central and renal hemodynamics in healthy men. Am J Physiol Endocrinol Metab. 2015;308(8):E641-649. doi: 10.1152/ajpendo.00429.2014.
15. Usdin TB, Mezey E, Button DC, et al. Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology. 1993;133(6):2861-2870. doi: 10.1210/endo.133.6.8243312.
16. Herbach N, Schairer I, Blutke A, et al. Diabetic kidney lesions of GIPRdn transgenic mice: podocyte hypertrophy and thickening of the GBM precede glomerular hypertrophy and glomerulosclerosis. Am J Physiol Renal Physiol.2009;296(4):F819-29. doi: 10.1152/ajprenal.90665.2008.
17. Blutke A, Block C, Berendt F, et al. Differential glomerular proteome analysis of two murine nephropathy models at onset of albuminuria. Proteomics Clin Appl. 2011;5(5-6):375-381. doi: 10.1002/prca.201000103.
18. Panchapakesan U, Mather A, Pollock C. Role of GLP-1 and DPP-4 in diabetic nephropathy and cardiovascular disease. Clin Sci (Lond). 2013;124(1):17-26. doi: 10.1042/CS20120167.
19. Singh AK. Dipeptidyl peptidase-4 inhibitors: Novel mechanism of actions. Indian J Endocrinol Metab. 2014;18(6):753-759. doi: 10.4103/2230-8210.141319.
20. Jackson EK, Kochanek SJ, Gillespie DG. Dipeptidyl peptidase IV regulates proliferation of preglomerular vascular smooth muscle and mesangial cells. Hypertension. 2012;60(3):757-764. doi: 10.1161/hypertensionaha.112.196501
21. Nistala R, Habibi J, Aroor A, et al. DPP4 inhibition attenuates filtration barrier injury and oxidant stress in the zucker obese rat. Obesity (Silver Spring). 2014;22(10):2172-2179. doi: 10.1002/oby.20833.
22. Pala L, Mannucci E, Pezzatini A, et al. Dipeptidyl peptidase-IV expression and activity in human glomerular endothelial cells. Biochem Biophys Res Commun. 2003;310(1):28-31. doi: 10.1016/j.bbrc.2003.08.111
23. Idorn T, Knop FK, Jørgensen MB, et al. Elimination and degradation of glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with end-stage renal disease. J Clin Endocrinol Metab. 2014;99(7):2457-2466. doi: 10.1210/jc.2013-3809.
24. Meier JJ, Nauck MA, Kranz D, et al. Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes. 2004;53(3):654-662. doi: 10.2337/diabetes.53.3.654.
25. Park CW, Kim HW, Ko SH, et al. Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J Am Soc Nephrol. 2007;18(4):1227-1238. doi: 10.1681/asn.2006070778.
26. Hirata K, Kume S, Araki S, et al. Exendin-4 has an anti-hypertensive effect in salt-sensitive mice model. Biochem Biophys Res Commun. 2009;380(1):44-49. doi: 10.1016/j.bbrc.2009.01.003.
27. Kodera R, Shikata K, Kataoka HU, et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes. Diabetologia.2011;54(4):965-978. doi: 10.1007/s00125-010-2028-x.
28. Cavusoglu T, Erbas O, Karadeniz T, et al. Comparison of nephron-protective effects of enalapril and GLP analogues (exenatide) in diabetic nephropathy. Exp Clin Endocrinol Diabetes. 2014;122(6):327-333. doi: 10.1055/s-0034-1372584
29. Ojima A, Ishibashi Y, Matsui T, et al. Glucagon-like peptide-1 receptor agonist inhibits asymmetric dimethylarginine generation in the kidney of streptozotocin-induced diabetic rats by blocking advanced glycation end product-induced protein arginine methyltranferase-1 expression. Am J Pathol. 2013;182(1):132-141. doi: 10.1016/j.ajpath.2012.09.016.
30. Yang H, Li H, Wang Z, et al. Exendin-4 ameliorates renal ischemia-reperfusion injury in the rat. J Surg Res. 2013;185(2):825-832. doi: 10.1016/j.jss.2013.06.042.
31. Chen YT, Tsai TH, Yang CC, et al. Exendin-4 and sitagliptin protect kidney from ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J Transl Med. 2013;11:270. doi: 10.1186/1479-5876-11-270.
32. Fahmy EK, Edrees EM. Protective Effect of Exendin-4 (Glp-1 Analogue) in Acute Kidney Injury in Experimental Animals. Journal of Health Science. 2014;4(3):64-71. doi:10.5923/j.health.20140403.03
33. Li W, Cui M, Wei Y, et al. Inhibition of the expression of TGF-β1 and CTGF in human mesangial cells by exendin-4, a glucagon-like peptide-1 receptor agonist. Cell Physiol Biochem. 2012;30(3):749-757. doi: 10.1159/000341454.
34. Xu WW, Guan MP, Zheng ZJ, et al. Exendin-4 alleviates high glucose-induced rat mesangial cell dysfunction through the AMPK pathway. Cell Physiol Biochem. 2014;33(2):423-432. doi: 10.1159/000358623.
35. Hendarto H, Inoguchi T, Maeda Y, et al. GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases. Metabolism.2012;61(10):1422-1434. doi: 10.1016/j.metabol.2012.03.002.
36. Zhou SJ, Bai L, Lv L, et al. Liraglutide ameliorates renal injury in streptozotocininduced diabetic rats by activating endothelial nitric oxide synthase activity via the downregulation of the nuclear factor κB pathway. Mol Med Rep.2014;10(5):2587-2594. doi: 10.3892/mmr.2014.2555.
37. Zhao X, Liu G, Shen H, et al. Liraglutide inhibits autophagy and apoptosis induced by high glucose through GLP-1R in renal tubular epithelial cells. Int J Mol Med. 2015;35(3):684-692. doi: 10.3892/ijmm.2014.2052.
38. Matsui T, Nakashima S, Nishino Y, et al. Dipeptidyl peptidase-4 deficiency protects against experimental diabetic nephropathy partly by blocking the advanced glycation end products-receptor axis. Lab Investig. 2015;95(5):525-533. doi: 10.1038/labinvest.2015.35
39. Mega C, Teixeira de Lemos E, Vala H, et al. Diabetic nephropathy amelioration by a low-dose sitagliptin in an animal model of type 2 diabetes (Zucker diabetic fatty rat). Exp Diabetes Res. 2011;2011:1-12. doi: 10.1155/2011/162092.
40. Marques C, Mega C, Gonçalves A, et al. Sitagliptin prevents inflammation and apoptotic cell death in the kidney of type 2 diabetic animals. Mediators Inflamm. 2014;2014:1-15. doi: 10.1155/2014/538737.
41. Vaghasiya J, Sheth N, Bhalodia Y, Manek R. Sitagliptin protects renal ischemia reperfusion induced renal damage in diabetes. Regul Pept. 2011;166(1-3):48-54. doi: 10.1016/j.regpep.2010.08.007.
42. Nuransoy A, Beytur A, Polat A, et al. Protective effect of sitagliptin against renal ischemia reperfusion injury in rats. Ren Fail. 2015;37(4):687-693. doi: 10.3109/0886022x.2015.1010991.
43. Chang MW, Chen CH, Chen YC, et al. Sitagliptin protects rat kidneys from acute ischemia-reperfusion injury via upregulation of GLP-1 and GLP-1 receptors. Acta Pharmacol Sin. 2015;36(1):119-130. doi: 10.1038/aps.2014.98.
44. Joo KW, Kim S, Ahn SY, et al. Dipeptidyl peptidase IV inhibitor attenuates kidney injury in rat remnant kidney. BMC Nephrol. 2013;14:98. doi: 10.1186/1471-2369-14-98.
45. Liu L, Liu J, Wong WT, et al. Dipeptidyl peptidase 4 inhibitor sitagliptin protects endothelial function in hypertension through a glucagon-like peptide 1-dependent mechanism. Hypertension. 2012;60(3):833-841. doi: 10.1161/hypertensionaha.112.195115.
46. Abd El Motteleb DM, Elshazly SM. Renoprotective effect of sitagliptin against hypertensive nephropathy induced by chronic administration of L-NAME in rats: Role of GLP-1 and GLP-1 receptor. Eur J Pharmacol. 2013;720(1-3):158-165. doi: 10.1016/j.ejphar.2013.10.033.
47. Tofovic DS, Bilan VP, Jackson EK. Sitagliptin augments angiotensin II-induced renal vasoconstriction in kidneys from rats with metabolic syndrome. Clin Exp Pharmacol Physiol. 2010;37(7):689-691. doi: 10.1111/j.1440-1681.2010.05389.x.
48. Jackson EK, Mi Z. Sitagliptin augments sympathetic enhancement of the renovascular effects of angiotensin II in genetic hypertension. Hypertension. 2008;51(6):1637-1642. doi: 10.1161/hypertensionaha.108.112532.
49. Vavrinec P, Henning RH, Landheer SW, et al. Vildagliptin restores renal myogenic function and attenuates renal sclerosis independently of effects on blood glucose or proteinuria in zucker diabetic fatty rat. Curr Vasc Pharmacol.2014;12(6):836-844. doi: 10.2174/15701611113116660151.
50. Байрашева В.К., Бабенко А.Ю., Чефу С.Г., и др. Нефропротективные свойства ингибитора ДПП-٤ в условиях экспериментальной диабетической нефропатии // Современные проблемы науки и образования. – 2015. – № 3. – С. 247. [Bayrasheva VK, Babenko AY, Chefu SG, et al. Nephroprotective properties of dpp-4 inhibitor in experimental model of diabetic nephropathy. Sovremennye problemy nauki i obrazovaniya. 2015;(3):247. (In Russ).] doi: 10.17513/spno.123-20212.
51. Liu WJ, Xie SH, Liu YN, et al. Dipeptidyl peptidase IV inhibitor attenuates kidney injury in streptozotocin-induced diabetic rats. J Pharmacol Exp Ther. 2012;340(2):248-255. doi: 10.1124/jpet.111.186866.
52. Kodera R, Shikata K, Takatsuka T, et al. Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes. Biochem Biophys Res Commun. 2014;443(3):828-833. doi: 10.1016/j.bbrc.2013.12.049.
53. Glorie LL, Verhulst A, Matheeussen V, et al. DPP4 inhibition improves functional outcome after renal ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2012;303(5):F681-688. doi: 10.1152/ajprenal.00075.2012.
54. Sufiun A, Rafiq K, Fujisawa Y, et al. Effect of dipeptidyl peptidase-4 inhibition on circadian blood pressure during the development of salt-dependent hypertension in rats. Hypertens Res. 2015;38(4):237-243. doi: 10.1038/hr.2014.173.
55. Ateyya H. Amelioration of cyclosporine induced nephrotoxicity by dipeptidyl peptidase inhibitor vildagliptin. Int Immunopharmacol. 2015;28(1):571-577. doi: 10.1016/j.intimp.2015.07.022.
56. Gangadharan Komala M, Gross S, Zaky A, et al. Saxagliptin reduces renal tubulointerstitial inflammation, hypertrophy and fibrosis in diabetes. Nephrology (Carlton). 2015. doi: 10.1111/nep.12618.
57. Arora MK, Singh UK, Bansal R. Morphological effect of combination of fenofibrate and saxagliptin on kidney of diabetic rats. Int J Pharmcy Pharm Sci. 2014;6(4):483-487.
58. Mason RP, Jacob RF, Kubant R, et al. Dipeptidyl peptidase-4 inhibition with saxagliptin enhanced nitric oxide release and reduced blood pressure and sICAM-1 levels in hypertensive rats. J Cardiovasc Pharmacol. 2012;60(5):467-473. doi: 10.1097/fjc.0b013e31826be204.
59. Sakai M, Uchii M, Myojo K, et al. Critical role of renal dipeptidyl peptidase-4 in ameliorating kidney injury induced by saxagliptin in Dahl salt-sensitive hypertensive rats. Eur J Pharmacol. 2015;761:109-115. doi: 10.1016/j.ejphar.2015.04.023.
60. Klimontov VV, Bgatova NP, Gavrilova JuS, et al. Linagliptin allieviate renal injury in a model of type 2 diabetic nephropathy. Diabetes. 2015;64(Suppl1):A144. doi 10.2337/db15-386-741.
61. Shi S, Srivastava SP, Kanasaki M, et al. Interactions of DPP-4 and integrin β1 influences endothelial-to-mesenchymal transition. Kidney Int. 2015;88(3):479-489. doi: 10.1038/ki.2015.103.
62. Alter ML, Ott IM, von Websky K, et al. DPP-4 inhibition on top of angiotensin receptor blockade offers a new therapeutic approach for diabetic nephropathy. Kidney Blood Press Res. 2012;36(1):119-130. doi: 10.1159/000341487.
63. Kanasaki K, Shi S, Kanasaki M, et al. Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes.2014;63(6):2120-2131. doi: 10.2337/db13-1029.
64. Nakashima S, Matsui T, Takeuchi M, Yamagishi S-I. Linagliptin blocks renal damage in type 1 diabetic rats by suppressing advanced glycation end products-receptor axis. Horm Metab Res. 2014;46(10):717-721. doi: 10.1055/s-0034-1371892.
65. Jung E, Kim J, Ho Kim S, et al. Gemigliptin improves renal function and attenuates podocyte injury in mice with diabetic nephropathy. Eur J Pharmacol. 2015;761:116-124. doi: 10.1016/j.ejphar.2015.04.055.
66. Min HS, Kim JE, Lee MH, et al. Dipeptidyl peptidase IV inhibitor protects against renal interstitial fibrosis in a mouse model of ureteral obstruction. Lab Invest. 2014;94(6):598-607. doi: 10.1038/labinvest.2014.50.
67. Tuttle KR, Heilmann C, Hoogwerf BJ, et al. Effects of exenatide on kidney function, adverse events, and clinical end points of kidney disease in type 2 diabetes. Am J Kidney Dis. 2013;62(2):396-398. doi: 10.1053/j.ajkd.2013.03.026.
68. Zhang H, Zhang X, Hu C, Lu W. Exenatide reduces urinary transforming growth factor-β1 and type IV collagen excretion in patients with type 2 diabetes and microalbuminuria. Kidney Blood Press Res. 2012;35(6):483-488. doi: 10.1159/000337929.
69. Pendergrass M, Fenton C, Haffner SM, Chen W. Exenatide and sitagliptin are not associated with increased risk of acute renal failure: a retrospective claims analysis. Diabetes Obes Metab. 2012;14(7):596-600. doi: 10.1111/j.1463-1326.2012.01567.x.
70. Weise WJ, Sivanandy MS, Block CA, Comi RJ. Exenatide-associated ischemic renal failure. Diabetes Care. 2009;32(2):e22-23. doi: 10.2337/dc08-1309.
71. López-Ruiz A, Peso-Gilsanz C, Meoro-Avilés A, et al. Acute renal failure when exenatide is co-administered with diuretics and angiotensin II blockers. Pharm World Sci. 2010;32(5):559-561. doi: 10.1007/s11096-010-9423-8.
72. Aijazi I, Abdulla FM, Zuberi BJ, Elhassan A. Exenatide induced acute kidney injury. J Ayub Med Coll Abbottabad. 2014;26(4):636-639.
73. Nandakoban H, Furlong TJ, Flack JR. Acute tubulointerstitial nephritis following treatment with exenatide. Diabet Med. 2013;30(1):123-125. doi: 10.1111/j.1464-5491.2012.03738.x.
74. Zavattaro M, Caputo M, Samà MT, et al. One-year treatment with liraglutide improved renal function in patients with type 2 diabetes: a pilot prospective study. Endocrine. 2015. doi: 10.1007/s12020-014-0519-0.
75. Imamura S, Hirai K, Hirai A. The glucagon-like peptide-1 receptor agonist, liraglutide, attenuates the progression of overt diabetic nephropathy in type 2 diabetic patients. Tohoku J Exp Med. 2013;231(1):57-61. doi: 10.1620/tjem.231.57.
76. Suzuki K, Tanaka S, Aoki C, et al. Greater efficacy and improved endothelial dysfunction in untreated type 2 diabetes with liraglutide versus sitagliptin. Dokkyo J Med Sci. 2014 [cited on 2015 Nov 14];41(3):211-220. Available from: http://ci.nii.ac.jp/lognavi?name=nels&lang=en&type=pdf&id=ART0010374550
77. Von Scholten BJ, Ørsted DD, Svendsen AL, et al. The influence of pharmaceutically induced weight changes on estimates of renal function: A patient-level pooled analysis of seven randomised controlled trials of glucose lowering medication. J Diabetes Complications. 2015. doi: 10.1016/j.jdiacomp.2015.08.007.
78. Davidson JA, Brett J, Falahati A, Scott D. Mild renal impairment and the efficacy and safety of liraglutide. Endocr Pract. 2011;17(3):345-355. doi: 10.4158/EP10215.RA.
79. Dubois-Laforgue D, Boutboul D, Lévy DJ, et al. Severe acute renal failure in patients treated with glucagon-like peptide-1 receptor agonists. Diabetes Res Clin Pract. 2014;103(3):e53-55. doi: 10.1016/j.diabres.2013.11.014.
80. Gariani K, de Seigneux S, Moll S. Acute interstitial nephritis after treatment with liraglutide. Am J Kidney Dis. 2014;63(2):347. doi: 10.1053/j.ajkd.2013.10.057.
81. Zheng T, Baskota A, Gao Y, et al. Increased plasma dipeptidyl peptidase 4 activities predict new-onset microalbuminuria in association with its proinflammatory effects in Chinese without diabetes: a four-year prospective study. Nephrol Dial Transplant. 2015;30(3):460-466. doi: 10.1093/ndt/gfu312.
82. Hattori S. Sitagliptin reduces albuminuria in patients with type 2 diabetes. Endocr J. 2011;58(1):69-73. doi: 10.1507/endocrj.k10e-382.
83. Harashima SI, Ogura M, Tanaka D, et al. Sitagliptin add-on to low dosage sulphonylureas: efficacy and safety of combination therapy on glycaemic control and insulin secretion capacity in type 2 diabetes. Int J Clin Pract. 2012;66(5):465-476. doi: 10.1111/j.1742-1241.2012.02903.x.
84. Mori H, Okada Y, Arao T, Tanaka Y. Sitagliptin improves albuminuria in patients with type 2 diabetes mellitus. J Diabetes Investig. 2014;5(3):313-319. doi: 10.1111/jdi.12142.
85. Kawasaki I, Hiura Y, Tamai A, et al. Sitagliptin reduces the urine albumin-to-creatinine ratio in type 2 diabetes through decreasing both blood pressure and estimated glomerular filtration rate. J Diabetes. 2015;7(1):41-46. doi: 10.1111/1753-0407.12153.
86. Chan JCN, Scott R, Arjona Ferreira JC, et al. Safety and efficacy of sitagliptin in patients with type 2 diabetes and chronic renal insufficiency. Diabetes Obes Metab. 2008;10(7):545-555. doi: 10.1111/j.1463-1326.2008.00914.x.
87. Liu C-T, Chen T-H, Chen H-H, et al. Effect of Sitagliptin on Blood Pressure and Estimated Glomerular Filtration Rate in Diabetic Patients Using an Angiotensin II Receptor Blocker. J Exp Clin Med. 2012;4(6):334-337. doi: 10.1016/j.jecm.2012.10.001.
88. Maeda H, Kubota A, Kanamori A, et al. Effects of sitagliptin on the serum creatinine in japanese type 2 diabetes. Diabetes Res Clin Pract. 2015;108(3):e42-45. doi: 10.1016/j.diabres.2015.03.008.
89. Halden STA, Asberg A, Vik K, et al. Short-term efficacy and safety of sitagliptin treatment in long-term stable renal recipients with new-onset diabetes after transplantation. Nephrol Dial Transplant. 2014;29(4):926-933. doi: 10.1093/ndt/gft536.
90. Tani S, Nagao K, Hirayama A. Association between urinary albumin excretion and low-density lipoprotein heterogeneity following treatment of type 2 diabetes patients with the dipeptidyl peptidase-4 inhibitor, vildagliptin: a pilot study. Am J Cardiovasc Drugs. 2013;13(6):443-450. doi: 10.1007/s40256-013-0043-2.
91. Kothny W, Shao Q, Groop PH, Lukashevich V. One-year safety, tolerability and efficacy of vildagliptin in patients with type 2 diabetes and moderate or severe renal impairment. Diabetes Obes Metab. 2012;14(11):1032-1039. doi: 10.1111/j.1463-1326.2012.01634.x.
92. Haidinger M, Werzowa J, Hecking M, et al. Efficacy and safety of vildagliptin in new-onset diabetes after kidney transplantation – A randomized, double-blind, placebo-controlled trial. Am J Transplant. 2014;14(1):115-123. doi: 10.1111/ajt.12518.
93. Udell JA, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes and moderate or severe renal impairment: observations from the SAVOR-TIMI 53 Trial. Diabetes Care. 2015;38(4):696-705. doi: 10.2337/dc14-1850.
94. Groop PH, Del Prato S, Taskinen MR, et al. Linagliptin treatment in subjects with type 2 diabetes with and without mild-to-moderate renal impairment. Diabetes Obes Metab. 2014;16(6):560-568. doi: 10.1111/dom.12281.
95. Groop PH, Cooper ME, Perkovic V, et al. Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction. Diabetes Care. 2013;36(11):3460-3468. doi: 10.2337/dc13-0323.
96. Cooper M, Perkovic V, McGill JB, et al. Kidney Disease End Points in a Pooled Analysis of Individual Patient-Level Data From a Large Clinical Trials Program of the Dipeptidyl Peptidase 4 Inhibitor Linagliptin in Type 2 Diabetes. Am J Kidney Dis. 2015;66(3):441-449. doi: 10.1053/j.ajkd.2015.03.024.
97. Lehrke M, Marx N, Patel S, et al. Safety and tolerability of linagliptin in patients with type 2 diabetes: A comprehensive pooled analysis of 22 placebo-controlled studies. Clin Ther. 2014;36(8):1130-1146. doi: 10.1016/j.clinthera.2014.06.008.
98. Groop PH, Cooper ME, Perkovic V, et al. Dipeptidyl peptidase-4 inhibition with linagliptin and effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: Rationale and design of the MARLINA-T2D™ trial. Diab Vasc Dis Res. 2015;12(6):455-462. doi: 10.1177/1479164115579002.
Supplementary files
|
1. Рисунок 1 | |
Subject | ||
Type | Исследовательские инструменты | |
View
(1MB)
|
Indexing metadata ▾ |
|
2. Рисунок 2 | |
Subject | ||
Type | Исследовательские инструменты | |
View
(523KB)
|
Indexing metadata ▾ |
Review
For citations:
Korbut A.I., Klimontov V.V. Incretin-based therapy: renal effects. Diabetes mellitus. 2016;19(1):53-63. (In Russ.) https://doi.org/10.14341/DM7727

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).