The influence of high glucose concentration on the ability of mesenchymal stromal cells to stimulate blood vessel growth
https://doi.org/10.14341/2072-0351-5631
Abstract
To study the influence of high glucose concentration on functional activity in human adipose tissue.
Materials and methods.
Flow cytometry and real time PCR were used to study functional activity of cultured MSC from human adipose issue at highglucose concentration.
Results.
Prolonged (10-12 days) incubation at a high glucose concentration (25 mM) suppressed the ability of MSC to stimulate angiogenesis. Also,glucose modified expression of genes activating and inhibiting angiogenesis but had no effect on MSC proliferation and apoptosis.
Conclusion.
High glucose concentration suppresses angiogenic activity of MSC in adipose tissue; it may account for incomplete restoration of bloodflow in diabetic patients.
About the Authors
Zhanna Alekseevna AkopyanGeorgy Vladimirovich Sharonov
Tatiana Nikolaevna Kochegura
Natalya Fedorovna Il'yashenko
Igor Eduardovich Belyanko
Valentina Ivanovna Dimitrova
Andrey Evgen'evich Zotikov
Natalya Igorevna Kalinina
Elena Viktorovna Parfenova
References
1. Spinetti G., Kraenkel N., Emanueli C., Madeddu P. Diabetes and vessel wall remodelling: from mechanistic insights to regenerative therapies // Cardiovasc. Res. - 2008 - V. 78 - P. 265-273.
2. Stratton I.M., Adler A.I., Neil H.A.W., Matthews D.R., Manley S.E., Cull C.A., Hadden D., Turner R.C., Holman R.R. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study // B.M.J. - 2000 - V. 321 - P. 405-412.
3. Calcutt N. A., Cooper M. E., Kern T. S., Schmidt A. M. Therapies for hyperglycaemia-induced diabetic complications: from animal models to clinical trials // Nat. Rev. Drug. Discov. - 2009 - V. 8 - P. 417-430.
4. Gao L., Mann G.E. Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling // Cardiovasc. Res. - 2009 - V. 82 - P. 9-20.
5. Kränkel N., Adams V., Linke A., Gielen S., Erbs S., Lenk K., Schuler G., Hambrecht R. Hyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cells // Arterioscler. Thromb. Vasc. Biol. - 2005. - V. 25 - P. 698-703.
6. Zuk P.A., Zhu M., Ashjian P., De Ugarte D.A., Huang J.I., Mizuno H., Alfonso Z.C., Fraser J.K., Benhaim P., Hedrick M.H. Human adipose tissue is a source of multipotent stem cells // Mol. Biol. Cell. - 2002. - V. 13 - P. 4279-4295.
7. Kilroy G.E., Foster S.J., Wu X., Ruiz J., Sherwood S., Heifetz A., Ludlow J.W., Stricker D.M., Potiny S., Green P., Halvorsen Y.C., Cheatham B., Storms R.W., Gimble J.M. Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors // J. Cell. Physiol. - 2007 - V. 212 - P. 702-709.
8. Rehman J., Traktuev D., Li J., Merfeld-Clauss S., Temm-Grove C.J., Bovenkerk J.E., Pell C.L., Johnstone B.H., Considine R.V., March K.L. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells // Circulation. - 2004 - V. 109 - P. 1292-1298.
9. Rubina K., Kalinina N., Efimenko A., Lopatina T., Melikhova V., Tsokolaeva Z., Sysoeva V., Tkachuk V., Parfyonova Y. Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation // Tissue Eng Part A. - 2009. - V. 15 - P. 2039-2050.
10. Schmitt A., Schmitt J., Münch G., Gasic-Milencovic J. Characterization of advanced glycation end products for biochemical studies: side chain modifications and fluorescence characteristics // Anal. Biochem. - 2005. - V. 338 - P. 201-215.
11. Wróbel K., Wróbel K., Garay-Sevilla M.E., Nava L.E., Malacara J.M. Novel analytical approach to monitoring advanced glycosylation end products in human serum with on-line spectrophotometric and spectrofluorometric detection in a flow system // Clin. Chem. -1997. - V. 43 - P. 1563-1569.
12. Yuan J.S., Reed A., Chen F., Stewart C.N. Statistical analysis of real-time PCR data // BMC Bioinformatics. - 2006. - V. 7 - P. 85.
13. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement // Cytotherapy. - 2006. - V. 8 - P. 315-317.
14. Boiret N., Rapatel C., Veyrat-Masson R., Guillouard L., Guérin J., Pigeon P., Descamps S., Boisgard S., Berger M. G. Characterization of nonexpanded mesenchymal progenitor cells from normal adult human bone marrow // Exp. Hematol. - 2005. - V. 33 - P. 219-225.
15. Kim H.K., Kim Y.J., Kim J.T., Kwon C.H., Kim Y.K., Bae Y.C., Kim D.H., Jung J.S. Alterations in the proangiogenic functions of adipose tissuederived stromal cells isolated from diabetic rats // Stem Cells Dev. - 2008. - V. 17 - P. 669-680.
16. Li W., Yanoff M., Liu X., Ye X. Retinal capillary pericyte apoptosis in early human diabetic retinopathy // Chin. Med. J. - 1997. - V. 110 - P. 659-663.
17. Bhang S.H., Cho S., Lim J.M., Kang J.M., Lee T., Yang H.S., Song Y.S., Park M.H., Kim H., Yoo K., Jang Y., Langer R., Anderson D.G., Kim B. Locally delivered growth factor enhances the angiogenic efficacy of adipose-derived stromal cells transplanted to ischemic limbs // Stem. Cells. - 2009. - V. 2. - P. 1976-1986.
18. Калинина Н.И., Акопян Ж.А., Пахомова Е.А., Шестакова М.В., Парфенова Е.В. Влияние гипергликемии на функциональное состояние клеток эндотелия вены пуповины человека in vitro // ДАН. - 2009. - Т. 426. - С. 210-21224.
19. Kuzuya M., Satake S., Miura H., Hayashi T., Iguchi A. Inhibition of endothelial cell differentiation on a glycosylated reconstituted basement membrane complex // Exp Cell Res - 1996 - V. 226 - P. 336-345.
20. McClain D.A., Paterson A.J., Roos M.D., Wei X., Kudlow J.E. Glucose and glucosamine regulate growth factor gene expression in vascular smooth muscle cells // PNAS. - 1992. -V. 89 - P. 8150-8154.
21. Moreno-Aliaga M.J., Stanhope K.L., Havel P.J. Transcriptional regulation of the leptin promoter by insulin-stimulated glucose metabolism in 3t3-l1 adipocytes // Biochem. Biophys. Res. Commun. -2001. - V. 283 - P. 544-548.
22. Yao D., Taguchi T., Matsumura T., Pestell R., Edelstein D., Giardino I., Suske G., Rabbani N., Thornalley P.J., Sarthy V.P., Hammes H., Brownlee M. High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A // J. Biol. Chem. - 2007. - V. 282 - P. 31038-31045.
23. Young M.E., Yan J., Razeghi P., Cooksey R.C., Guthrie P.H., Stepkowski S.M., McClain, D.A., Tian R., Taegtmeyer H. Proposed regulation of gene expression by glucose in rodent heart // Gene Regul Syst Bio. - 2007. - V. 1 - P. 251-262.
24. Navedo M.F., Takeda Y., Nieves-Cintrón M., Molkentin J.D., Santana L.F. Elevated Ca2+ sparklet activity during acute hyperglycemia and diabetes in cerebral arterial smooth muscle cells // Am. J. Physiol., Cell Physiol. - 2010. - V. 298 - C. 211-220.
Review
For citations:
Akopyan Zh.A., Sharonov G.V., Kochegura T.N., Il'yashenko N.F., Belyanko I.E., Dimitrova V.I., Zotikov A.E., Kalinina N.I., Parfenova E.V. The influence of high glucose concentration on the ability of mesenchymal stromal cells to stimulate blood vessel growth. Diabetes mellitus. 2011;14(2):32-35. (In Russ.) https://doi.org/10.14341/2072-0351-5631

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).