Effects of empagliflozin on biomarkers of renal injury, fibrosis and low-grade inflammation in patients with type 2 diabetes
https://doi.org/10.14341/DM13350
Abstract
BACKGROUND: Sodium-glucose cotransporter 2 (SGLT2) inhibitors have been implemented into the treatment standards for chronic kidney disease (CKD) in patients with type 2 diabetes (T2D). Identification of predictors of the protective effect of SGLT2 inhibitors on the kidneys remains an urgent task.
AIM: To evaluate the effects of the SGLT2 inhibitor empagliflozin on the levels of biomarkers of renal injury, fibrosis and low-grade inflammation in patients with T2D with CKD and/or high cardiovascular risk.
MATERIALS AND METHODS: This prospective cohort single-center study included 30 patients with T2D newly initiated treatment with an SGLT2 inhibitor. Before and on day 90 of treatment with empagliflozin (10 mg/day), urinary excretion of nephrin, retinol-binding protein 4 (RBP-4), type IV collagen, and fibrosis marker WFDC-2, as well as serum concentrations of high-sensitivity C-reactive protein (hsCRP) and tumor necrosis factor receptor 1A alpha (TNFRSF1A) were determined by ELISA. Twenty healthy individuals were included in the control group.
RESULTS: Patients with T2D compared to controls initially demonstrated higher excretion of nephrin (p=0.03), RBP-4 (p=0.001), type IV collagen (p=0.04) and WDFC-2 (p=0.02), as well as higher serum concentrations of hsCRP and TNFSF1A (p=0.03). Empagliflozin treatment was associated with a significant decrease in the excretion of RBP-4 (p=0.04) and TNFRSF1A levels (p<0.001). Excretion of nephrin, type IV collagen, WFDC-2 and hsCRP levels did not change significantly (p>0.05). Baseline RBP-4 excretion and serum TNFRSF1A levels were associated with changes in creatinine levels during empagliflozin treatment.
CONCLUSION: In patients with T2D with CKD and/or high cardiovascular risk, empagliflozin treatment resulted in decreased urinary excretion of RBP-4 and serum TNFRSF1A levels. These data may indicate a protective effect of empagliflozin on tubular dysfunction and low-grade inflammation.
Keywords
About the Authors
A. I. KorbutRussian Federation
Anton I. Korbut - MD, PhD.
6 Arbuzov street, 630117 Novosibirsk
Competing Interests:
None
V. V. Romanov
Russian Federation
Vyacheslav V. Romanov - MD, PhD.
6 Arbuzov street, 630117 Novosibirsk
Competing Interests:
None
V. V. Klimontov
Russian Federation
Vadim V. Klimontov - MD, PhD, Professor.
6 Arbuzov street, 630117 Novosibirsk
Competing Interests:
None
References
1. Dedov II, Shestakova MV, Mayorov AY, et al. Diabetes mellitus type 2 in adults. Diabetes mellitus. 2020;23(2S):4-102. (In Russ.). doi: https://doi.org/10.14341/DM12507
2. Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323-334. doi: https://doi.org/10.1056/NEJMoa1515920
3. Berezin AE, Berezina TA. Plausible prediction of renoprotective effects of sodium-glucose cotransporter-2 inhibitors in patients with chronic kidney diseases. J Int Med Res. 2024;52(2):3000605241227659. doi: https://doi.org/10.1177/03000605241227659
4. Cherney DZI, Zinman B, Inzucchi SE, et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5(8):610-621. doi: https://doi.org/10.1016/S2213-8587(17)30182-1
5. Klimontov VV, Korbut AI. Normoalbuminuric chronic kidney disease in diabetes. Ter Arkh. 2018;90(10):94-98. (In Russ.) doi: https://doi.org/10.26442/terarkh2018901094-98
6. Mesfine BB, Vojisavljevic D, Kapoor R, et al. Urinary nephrin-a potential marker of early glomerular injury: a systematic review and meta-analysis. J Nephrol. 2024;37(1):39-51. doi: https://doi.org/10.1007/s40620-023-01585-0
7. Klimontov VV, Korbut AI, Fazullina ON, et al. Clinical and laboratory characteristics of the patterns of chronic kidney disease in patients with type 2 diabetes. Diabetes mellitus. 2019;22(6):515-525. (In Russ.) doi: https://doi.org/10.14341/DM10277
8. Vikulova OK, Zuraeva ZT, Mikhaleva OV, et al. Renal effects of glucagon-like peptide receptor agonists in patients with type 1 diabetes mellitus. Ter Arkh. 2018;90(6):59-64. (In Russ.) doi: https://doi.org/10.26442/terarkh201890659-64
9. Korbut AI, Romanov VV, Klimontov VV. Urinary markers of tubular injury and renal fibrosis in patients with type 2 diabetes and different phenotypes of chronic kidney disease. Life (Basel). 2023;13(2):343. doi: https://doi.org/10.3390/life13020343
10. Zhang L, Cheng YL, Xue S, Xu ZG. The role of circulating RBP4 in the type 2 diabetes patients with kidney diseases: a systematic review and meta-analysis. Dis Markers. 2020;2020:8830471. doi: https://doi.org/10.1155/2020/8830471
11. Klimontov VV, Eremenko NV, Myakina NE, Fazullina ON. Cystatin C and collagen type IV in diagnostics of chronic kidney disease in type 2 diabetic patients. Diabetes mellitus. 2015;18(1):87-93. (In Russ.) doi: https://doi.org/10.14341/DM2015187-93
12. Ihara K, Skupien J, Kobayashi H, et al. Profibrotic circulating proteins and risk of early progressive renal decline in patients with type 2 diabetes with and without albuminuria. Diabetes Care. 2020;43(11):2760-2767. doi: https://doi.org/10.2337/dc20-0630
13. Chang LH, Chang TT, Chu CH, et al. Soluble tumor necrosis factor receptor type 1 is an alternative marker of urinary albumin-creatinine ratio and estimated glomerular filtration rate for predicting the decline of renal function in subjects with type 2 diabetes mellitus. Clin Chim Acta. 2024;558:117880. doi: https://doi.org/10.1016/j.cca.2024.117880
14. Winter L, Wong LA, Jerums G, et al. Use of readily accessible inflammatory markers to predict diabetic kidney disease. Front Endocrinol (Lausanne). 2018;9:225. doi: https://doi.org/10.3389/fendo.2018.00225
15. LeBleu VS, Teng Y, O’Connell JT, et al. Identification of human epididymis protein-4 as a fibroblast-derived mediator of fibrosis. Nat Med. 2013;19(2):227-231. doi: https://doi.org/10.1038/nm.2989
16. Shaheer A, Kumar A, Menon P, et al. Effect of add-on therapy of sodium-glucose cotransporter 2 inhibitors and dipeptidyl peptidase 4 inhibitors on adipokines in type 2 diabetes mellitus. J Clin Med Res. 2021;13(6):355-362. doi: https://doi.org/10.14740/jocmr4510
17. Sen T, Li J, Neuen BL, et al. Effects of the SGLT2 inhibitor canagliflozin on plasma biomarkers TNFR-1, TNFR-2 and KIM-1 in the CANVAS trial. Diabetologia. 2021;64(10):2147-2158. doi: https://doi.org/10.1007/s00125-021-05512-5
18. Patera F, Gatticchi L, Cellini B, et al. Kidney fibrosis and oxidative stress: from molecular pathways to new pharmacological opportunities. Biomolecules. 2024;14(1):137. doi: https://doi.org/10.3390/biom14010137
19. Vallon V, Thomson SC. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol. 2020;16(6):317-336. doi: https://doi.org/10.1038/s41581-020-0256-y
20. Klimontov VV, Korbut AI, Taskaeva IS, et al. Empagliflozin alleviates podocytopathy and enhances glomerular nephrin expression in db/db diabetic mice. World J Diabetes. 2020;11(12):596-610. doi: https://doi.org/10.4239/wjd.v11.i12.596
21. Tian Y, Chen XM, Liang XM, et al. SGLT2 inhibitors attenuate nephrin loss and enhance TGF-β1 secretion in type 2 diabetes patients with albuminuria: a randomized clinical trial. Sci Rep. 2022;12(1):15695. doi: https://doi.org/10.1038/s41598-022-19988-7
22. Li C, Ng JKC, Chan GCK, et al. Preservation of urinary podocyte markers in diabetic kidney disease by sodium-glucose cotransporter 2 inhibitor therapy. Kidney Dis (Basel). 2025;11(1):218-225. doi: https://doi.org/10.1159/000545225
23. Tao X, Pan T, Zhong X, et al. SGLT-2 inhibitor intervention in diabetes mellitus patients can reduce the incidence of renal injury and adverse events. Am J Transl Res. 2021;13(4):2731-2737
24. Polhill TS, Saad S, Poronnik P, et al. Short-term peaks in glucose promote renal fibrogenesis independently of total glucose exposure. Am J Physiol Renal Physiol. 2004;287(2):F268-273. doi: https://doi.org/10.1152/ajprenal.00084.2004
25. Huang X, Guo X, Yan G, et al. Dapagliflozin attenuates contrast-induced acute kidney injury by regulating the HIF-1α/HE4/NF-κB pathway. J Cardiovasc Pharmacol. 2022;79(6):904-913. doi: https://doi.org/10.1097/FJC.0000000000001268
26. Rykova EY, Klimontov VV, Shmakova E, et al. Anti-Inflammatory effects of SGLT2 inhibitors: focus on macrophages. Int J Mol Sci. 2025;26(4):1670. doi: https://doi.org/10.3390/ijms26041670
27. Iannantuoni F, M de Marañon A, Diaz-Morales N, et al. The SGLT2 inhibitor empagliflozin ameliorates the inflammatory profile in type 2 diabetic patients and promotes an antioxidant response in leukocytes. J Clin Med. 2019;8(11):1814. doi: https://doi.org/10.3390/jcm8111814
28. Hattori S. Anti-inflammatory effects of empagliflozin in patients with type 2 diabetes and insulin resistance. Diabetol Metab Syndr. 2018;10:93. doi: https://doi.org/10.1186/s13098-018-0395-5
29. Sezai A, Sekino H, Unosawa S, et al. Canagliflozin for Japanese patients with chronic heart failure and type II diabetes. Cardiovasc Diabetol. 2019;18(1):76. doi: https://doi.org/10.1186/s12933-019-0877-2
30. Buttice L, Ghani M, Suthakar J, et al. The effect of sodium-glucose cotransporter-2 inhibitors on inflammatory biomarkers: A meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2024;26(7):2706-2721. doi: https://doi.org/10.1111/dom.15586
Supplementary files
Review
For citations:
Korbut A.I., Romanov V.V., Klimontov V.V. Effects of empagliflozin on biomarkers of renal injury, fibrosis and low-grade inflammation in patients with type 2 diabetes. Diabetes mellitus. 2025;28(6):550-557. (In Russ.) https://doi.org/10.14341/DM13350
JATS XML
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).









































