Preview

Diabetes mellitus

Advanced search

Spectrum of effects of dipeptidyl peptidase-4 inhibitors: within and beyond glycemic control (part 2)

https://doi.org/10.14341/DM13343

Abstract

To mark the 20th anniversary of clinical use of dipeptidase-4 inhibitors (DPP-4i), the understanding of the spectrum of effects (metabolic, clinical, biological) beyond the initially defined glycemic control is expanded, and the possibilities and directions of their safe use are considered, taking into account new biological effects. The cardiovascular and nephrological safety of DPP-4i is clarified in the context of combination therapy with metformin and insulin. The underestimated relationship between type 2 diabetes mellitus and bone fragility and the choice of antihyperglycemic drugs is analyzed. New biological effects of DPP-4 inhibitors with potential clinical significance are considered. Alogliptin is presented as an antidiabetic incretin agent with its capabilities and surprises in metabolic control. 

About the Authors

L. A. Ruyatkina
Novosibirsk State Medical University
Russian Federation

Lyudmila A. Ruyatkina, MD, PhD, Professor

52 Krasny prospect, 630091 Novosibirsk 


Competing Interests:

Авторы декларируют отсутствие конфликта интересов. 



D. S. Ruyatkin
Novosibirsk State Medical University
Russian Federation

Dmitry S. Ruyatkin, MD, PhD, Associate Professor 

Novosibirsk 


Competing Interests:

Авторы декларируют отсутствие конфликта интересов. 



References

1. Scirica BM, Im K, Murphy SA et al. Re-adjudication of the Trial Evaluating Cardiovascular Outcomes with Sitagliptin (TECOS) with study-level meta-analysis of hospitalization for heart failure from cardiovascular outcomes trials with dipeptidyl peptidase-4 (DPP-4) inhibitors. Clin. Cardiol. 2022;45:794–801. https://doi.org/10.1002/clc.23844.

2. Nikolaidou A, Ventoulis I, Karakoulidis G et al. Hypoglycemic Drugs in Patients with Diabetes Mellitus and Heart Failure: A Narrative Review. Medicina (Kaunas). 2024;60(6):912. https://doi.org/10.3390/medicina60060912.

3. Crowley MJ, Gokhale M, Pate V et al. Impact of metformin use on the cardiovascular effects of dipeptidyl peptidase-4 inhibitors: An analysis of Medicare claims data from 2007 to 2015. Diabetes Obes Metab. 2019;21(4):854-865. https://doi.org/10.1111/dom.13589.

4. Razavi M, Wei YY, Rao XQ, Zhong JX. DPP-4 inhibitors and GLP-1RAs: cardiovascular safety and benefits. Military Med Res 9, 45 (2022). https://doi.org/10.1186/s40779-022-00410-2.

5. Crowley MJ, Williams JW Jr, Kosinski AS et al. Metformin Use May Moderate the Effect of DPP-4 Inhibitors on Cardiovascular Outcomes. Diabetes Care. 2017;40(12):1787-1789. https://doi.org/10.2337/dc17-1528.

6. Her AY, Choi BG, Rha SW et al. Korea Acute Myocardial Infarction Registry (KAMIR)-National Institutes of Health (NIH) investigators. Dipeptidyl peptidase-4 inhibitors versus sulfonylureas on the top of metformin in patients with diabetes and acute myocardial infarction. Cardiovasc Diagn Ther. 2024;14(1):38-50. https://doi.org/10.21037/cdt-23-349.

7. Koufakis T, Papanas N, Zebekakis P, Kotsa K. Treatment options following metformin in primary prevention populations with type 2 diabetes: which is the right road to take? Expert Rev Clin Pharmacol. 2021;14(10):1189-1192. https://doi.org/10.1080/17512433.2021.1942843.

8. Scheen AJ. Diabetes: Metformin - a cardiovascular moderator of DPP4 inhibitors? Nat Rev Endocrinol. 2018;14(1):8-9. https://doi.org/10.1038/nrendo.2017.154.

9. Baksh S, Wen J, Mansour O et al. Dipeptidyl peptidase-4 inhibitor cardiovascular safety in patients with type 2 diabetes, with cardiovascular and renal disease: a retrospective cohort study. Sci Rep. 2021;11(1):16637. https://doi.org/10.1038/s41598-021-95687-z.

10. Kwon CS, Seoane-Vazquez E, Rodriguez-Monguio R. Cost-effectiveness analysis of metformin+dipeptidyl peptidase-4 inhibitors compared to metformin+sulfonylureas for treatment of type 2 diabetes. BMC Health Serv Res. 2018;18(1):78. https://doi.org/10.1186/s12913-018-2860-0.

11. Tan WY, Hsu W, Lee ML, Tan NC. Predictors of HbA1c treatment response to add-on medication following metformin monotherapy: a population-based cohort study. Sci Rep. 2023;13(1):20891. https://doi.org/10.1038/s41598-023-47896-x.

12. Hsu WC, Lin CS, Chen JF, Chang CM. The Effects of Dipeptidyl Peptidase 4 Inhibitors on Renal Function in Patients with Type 2 Diabetes Mellitus. J Clin Med. 2022;11(9):2653. https://doi.org/10.3390/jcm11092653.

13. Goldney J, Sargeant JA, Davies MJ. Incretins and microvascular complications of diabetes: neuropathy, nephropathy, retinopathy and microangiopathy. Diabetologia. 2023;66(10):1832-1845. https://doi.org/10.1007/s00125-023-05988-3.

14. Krook A, Mulder H. Incretins: turning the venom into the antidote. Diabetologia 66, 1762–1764 (2023). https://doi.org/10.1007/s00125-023-05987-4.

15. Gallwitz B. Clinical Use of DPP-4 Inhibitors. Front Endocrinol (Lausanne). 2019;10:389. https://doi.org/10.3389/fendo.2019.00389.

16. Bondar I. A., Grazhdankina D. V., Krasnopevtseva I. P. Glycemic variability in patients with type 2 diabetes mellitus. Lvrach. 2024; 12 (27): 39-45. https://doi.org/10.51793/OS.2024.27.12.006.

17. Nicotera R, Casarella A, Longhitano E et al. Antiproteinuric effect of DPP-IV inhibitors in diabetic and non-diabetic kidney diseases. Pharmacol Res. 2020;159:105019. https://doi.org/10.1016/j.phrs.2020.105019.

18. Lyu YS, Oh S, Kim JH et al. Comparison of SGLT2 inhibitors with DPP-4 inhibitors combined with metformin in patients with acute myocardial infarction and diabetes mellitus. Cardiovasc Diabetol. 2023 Jul 22;22(1):185. https://doi.org/10.1186/s12933-023-01914-4. Erratum in: Cardiovasc Diabetol. 2023; 5;22(1):242. https://doi.org/10.1186/s12933-023-01960-y.

19. Xie Y, Bowe B, Xian H et al. Comparative effectiveness of SGLT2 inhibitors, GLP-1 receptor agonists, DPP-4 inhibitors, and sulfonylureas on risk of major adverse cardiovascular events: emulation of a randomised target trial using electronic health records. Lancet Diabetes Endocrinol. 2023;11(9):644-656. https://doi.org/10.1016/S2213-8587(23)00171-7.

20. Enzan N, Matsushima S, Kaku H et al. Beneficial Effects of Dipeptidyl Peptidase-4 Inhibitors on Heart Failure With Preserved Ejection Fraction and Diabetes. JACC Asia. 2023;3(1):93-104. https://doi.org/10.1016/j.jacasi.2022.09.015.

21. Caturano A, Vetrano E, Galiero R et al. Advances in the Insulin-Heart Axis: Current Therapies and Future Directions. Int J Mol Sci. 2024;25(18):10173. https://doi.org/10.3390/ijms251810173.

22. Yen FS, Chiang JH, Hwu CM et al. All-cause mortality of insulin plus dipeptidyl peptidase-4 inhibitors in persons with type 2 diabetes. BMC Endocr Disord. 2019;19(1):3. https://doi.org/10.1186/s12902-018-0330-7.

23. Choi Y, Ko SH, Chang K et al. Effect of dipeptidyl peptidase-4 inhibitor on the progression of coronary artery disease evaluated by computed tomography in patients receiving insulin therapy for type 2 diabetes mellitus. J Diabetes. 2023;15(11):944-954. https://doi.org/10.1111/1753-0407.

24. Yoshikawa F, Uchino H, Nagashima T et al. Dipeptidyl peptidase-4 inhibitor improves glycemic variability in multiple daily insulin-treated type 2 diabetes: a prospective randomized-controlled trial. Diabetol Int. 2021;13(1):124-131. https://doi.org/10.1007/s13340-021-00513-6.

25. Lin WQ, Cai ZJ, Chen T et al. Cost-Effectiveness of Dipeptidylpeptidase-4 Inhibitors Added to Metformin in Patients With Type 2 Diabetes in China. Front Endocrinol (Lausanne). 2021; 13;12:684960. https://doi.org/10.3389/fendo.2021.684960.

26. Yin R, Xu Y, Wang X et al. Role of Dipeptidyl Peptidase 4 Inhibitors in Antidiabetic Treatment. Molecules. 2022;27(10):3055. https://doi.org/10.3390/molecules27103055.

27. Kumar S, Mittal A, Mittal A. A review upon medicinal perspective and designing rationale of DPP-4 inhibitors. Bioorg Med Chem. 2021;46:116354. https://doi.org/10.1016/j.bmc.2021.116354.

28. Baziar L, Emami L, Rezaei Z et al. Design, synthesis, biological evaluation and computational studies of 4-Aminopiperidine-3, 4-dihyroquinazoline-2-uracil derivatives as promising antidiabetic agents. Sci Rep. 2024;14(1):26538. https://doi.org/10.1038/s41598-024-77481-9.

29. Rahim K, Shan M, Ul Haq I et al. Revolutionizing Treatment Strategies for Autoimmune and Inflammatory Disorders: The Impact of Dipeptidyl-Peptidase 4 Inhibitors. J Inflamm Res. 2024;17:1897-1917. https://doi.org/10.2147/JIR.S442106.

30. Kushwaha RN, Haq W, Katti SB. Sixteen-years of clinically relevant dipeptidyl peptidase-IV (DPP-IV) inhibitors for treatment of type-2 diabetes: a perspective. Curr Med Chem. 2014;21(35):4013-45. https://doi.org/10.2174/0929867321666140915143309.

31. Subrahmanyan NA, Koshy RM, Jacob K, Pappachan JM. Efficacy and Cardiovascular Safety of DPP-4 Inhibitors. Curr Drug Saf. 2021;16(2):154-164. https://doi.org/10.2174/1574886315999200819150544.

32. Esposito K, Chiodini P, Capuano A et al. Baseline glycemic parameters predict the hemoglobin A1c response to DPP-4 inhibitors : meta-regression analysis of 78 randomized controlled trials with 20,053 patients. Endocrine. 2014;46(1):43-51. https://doi.org/10.1007/s12020-013-0090-0.

33. Takamiya Y, Kobayashi K, Kudo T et al. Comprehensive Efficacy of the Dipeptidyl Peptidase 4 Inhibitor Alogliptin in Practical Clinical Settings: A Prospective Multi-Center Interventional Observational Study. J Clin Med Res. 2020;12(7):423-430. https://doi.org/10.14740/jocmr4224.

34. Feng J, Zhang Z, Wallace MB et al. Discovery of alogliptin: a potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV. J Med Chem. 2007;50(10):2297-300. https://doi.org/10.1021/jm070104l.

35. Ueki K, Tanizawa Y, Nakamura J et al. Long-term safety and efficacy of alogliptin, a DPP-4 inhibitor, in patients with type 2 diabetes: a 3-year prospective, controlled, observational study (J-BRAND Registry). BMJ Open Diabetes Res Care. 2021;9(1):e001787. https://doi.org/10.1136/bmjdrc-2020-001787.

36. Takebayashi K, Suzuki T, Naruse R et al. Long-Term Effect of Alogliptin on Glycemic Control in Japanese Patients With Type 2 Diabetes: A 3.5-Year Observational Study. J Clin Med Res. 2017;9(9):802-808. https://doi.org/10.14740/jocmr3118w.

37. Petunina N.A., Elmurzaeva E.A., Khachaturov M.V. Comparison of the efficacy of dipeptidyl peptidase 4 inhibitors in achieving the target level of glycated hemoglobin: a systematic review and network meta-analysis. Effective Pharmacotherapy.

38. Nishimura R, Osonoi T, Koike Y et al. A Randomized Pilot Study of the Effect of Trelagliptin and Alogliptin on Glycemic Variability in Patients with Type 2 Diabetes. Adv Ther. 2019;36(11):3096-3109. https://doi.org/10.1007/s12325-019-01097-z.

39. Nodari S, Fioretti F, Barilla F. Redefining diabetes mellitus treatments according to different mechanisms beyond hypoglycaemic effect. Heart Fail Rev. 2023;28(3):607-625. https://doi.org/10.1007/s10741-021-10203-9.

40. Lu S, Wang Q, Lu H et al. Lipids as potential mediators linking body mass index to diabetes: evidence from a mediation analysis based on the NAGALA cohort. BMC Endocr Disord. 2024;24(1):66. https://doi.org/10.1186/s12902-024-01594-5.

41. Kutoh E, Kaneoka N, Hirate M. Alogliptin: a new dipeptidyl peptidase-4 inhibitor with potential anti-atherogenic properties. Endocr Res. 2015;40(2):88-96. https://doi.org/10.3109/07435800.2014.952743.

42. Nishida Y, Takahashi Y, Tezuka K et al. Comparative effect of dipeptidyl-peptidase 4 inhibitors on laboratory parameters in patients with diabetes mellitus. BMC Pharmacol Toxicol. 2020;21(1):28. https://doi.org/10.1186/s40360-020-00407-4.

43. Barchetta I, Cimini FA, Dule S, Cavallo MG. Dipeptidyl Peptidase 4 (DPP4) as A Novel Adipokine: Role in Metabolism and Fat Homeostasis. Biomedicines. 2022;10(9):2306. https://doi.org/10.3390/biomedicines10092306.

44. Kutoh E, Kuto AN et al. Alogliptin: a DPP-4 inhibitor modulating adipose tissue insulin resistance and atherogenic lipid. Eur J Clin Pharmacol. 2023;79(7):947-959. https://doi.org/10.1007/s00228-023-03506-3.

45. Okada K, Kikuchi S, Kuji S et al. Impact of early intervention with alogliptin on coronary plaque regression and stabilization in patients with acute coronary syndromes. Atherosclerosis. 2022;360:1-7. https://doi.org/10.1016/j.atherosclerosis.2022.09.005.

46. Duan L, Rao X, Xia C et al. The regulatory role of DPP4 in atherosclerotic disease. Cardiovasc Diabetol. 2017 Jun 15;16(1):76. https://doi.org/10.1186/s12933-017-0558-y.

47. Lv Q, Yang Y, Lv Y et al. Long-term effects of different hypoglycemic drugs on carotid intima-media thickness progression: a systematic review and network meta-analysis. Front Endocrinol (Lausanne). 2024;15:1403606. https://doi.org/10.3389/fendo.2024.1403606.

48. Wakasugi S, Mita T, Katakami N et al. Associations between continuous glucose monitoring-derived metrics and arterial stiffness in Japanese patients with type 2 diabetes. Cardiovasc Diabetol. 2021;20(1):15. https://doi.org/10.1186/s12933-020-01194-2.

49. Kishimoto S, Kinoshita Y, Matsumoto T et al. Effects of the Dipeptidyl Peptidase 4 Inhibitor Alogliptin on Blood Pressure in Hypertensive Patients with Type 2 Diabetes Mellitus. Am J Hypertens. 2019;32(7):695-702. https://doi.org/10.1093/ajh/hpz065.

50. Kato S, Fukui K, Kirigaya H et al. Inhibition of DPP-4 by alogliptin improves coronary flow reserve and left ventricular systolic function evaluated by phase contrast cine magnetic resonance imaging in patients with type 2 diabetes and coronary artery disease. Int J Cardiol. 2016;223:770-775. https://doi.org/10.1016/j.ijcard.2016.08.306.

51. Zhang J, Chen Q, Zhong J et al. DPP-4 Inhibitors as Potential Candidates for Antihypertensive Therapy: Improving Vascular Inflammation and Assisting the Action of Traditional Antihypertensive Drugs. Front Immunol. 2019;10:1050. https://doi.org/10.3389/fimmu.2019.01050.

52. Sano M. Mechanism by which dipeptidyl peptidase-4 inhibitors increase the risk of heart failure and possible differences in heart failure risk. J Cardiol. 2019;73(1):28-32. https://doi.org/10.1016/j.jjcc.2018.07.004.

53. Cao F, Wu K, Zhu YZ, Bao ZW. Roles and Mechanisms of Dipeptidyl Peptidase 4 Inhibitors in Vascular Aging. Front Endocrinol (Lausanne). 2021;12:731273. https://doi.org/10.3389/fendo.2021.731273.

54. Thanapairoje K, Junsiritrakhoon S, Wichaiyo S et al. Anti-ageing effects of FDA-approved medicines: a focused review. J Basic Clin Physiol Pharmacol. 2023;34(3):277-289. https://doi.org/10.1515/jbcpp-2022-0242.

55. Shestakova MV, Shestakova EA, Kachko VA. Specific features of the use of alogliptin in various groups of patients with type 2 diabetes mellitus: additional results of the ENTIRE study. Probl Endokrinol (Mosk). 2020;66(2):49-60. Russian. https://doi.org/10.14341/probl12273.

56. Ruyatkina LA, Ruyatkin DS, Shcherbakova LV, Iskhakova IS. Vector of glycated hemoglobin in the formation of dysglycemia in postmenopause: Emphasis on early diagnosis and therapy. Meditsinskiy sovet = Medical Council. 2024;(16):135-147. (In Russ.) https://doi.org/10.21518/ms2024-394

57. Sanches CP, Vianna AGD, Barreto,FdC. The impact of type 2 diabetes on bone metabolism. Diabetol Metab Syndr. 2017; 9:85. https://doi.org/10.1186/s13098-017-0278-1.

58. Yousefzadeh N, Jeddi S, Kashfi K, Ghasemi A. Diabetoporosis: Role of nitric oxide. EXCLI J. 2021; 20:764-780. https://doi.org/10.17179/excli2021-3541.

59. Martiniakova M, Mondockova V, Kovacova V et al. Interrelationships among metabolic syndrome, bone-derived cytokines, and the most common metabolic syndrome-related diseases negatively affecting bone quality. Diabetol Metab Syndr. 2024;16(1):217. https://doi.org/10.1186/s13098-024-01440-7.

60. Rinonapoli G, Pace V, Ruggiero C et al. Obesity and Bone: A Complex Relationship. Int J Mol Sci. 2021;22(24):13662. https://doi.org/10.3390/ijms222413662.

61. Sheu A, White CP, Center JR. Bone metabolism in diabetes: a clinician's guide to understanding the bone-glucose interplay. Diabetologia. 2024;67(8):1493-1506. https://doi.org/10.1007/s00125-024-06172-x.

62. Rhee EJ. Extra-Glycemic Effects of Anti-Diabetic Medications: Two Birds with One Stone? Endocrinol Metab (Seoul). 2022;37(3):415-429. https://doi.org/10.3803/EnM.2022.304.

63. Wikarek A, Grabarczyk M, Klimek K et al. Effect of Drugs Used in Pharmacotherapy of Type 2 Diabetes on Bone Density and Risk of Bone Fractures. Medicina (Kaunas). 2024;60(3):393. https://doi.org/10.3390/medicina60030393.

64. Zaki MK, Abed MN, Alassaf FA. Antidiabetic Agents and Bone Quality: A Focus on Glycation End Products and Incretin Pathway Modulations. J Bone Metab. 2024;31(3):169-181. https://doi.org/10.11005/jbm.2024.31.3.169.

65. Yang Q, Fu B, Luo D et al. The Multiple Biological Functions of Dipeptidyl Peptidase-4 in Bone Metabolism. Front Endocrinol (Lausanne). 2022; 13:856954. https://doi.org/10.3389/fendo.2022.856954.

66. Prasad TN, Arjunan D, Pal R, Bhadada SK. Diabetes and Osteoporosis. Indian J Orthop. 2023;57(Suppl 1):209-217. https://doi.org/10.1007/s43465-023-01049-4.

67. Viggers R, Rasmussen NH, Vestergaard P. Effects of Incretin Therapy on Skeletal Health in Type 2 Diabetes-A Systematic Review. JBMR Plus. 2023;7(11):e10817. https://doi.org/10.1002/jbm4.10817.

68. Chang CH, Lu CH, Chung CH et al. Dipeptidyl peptidase-4 inhibitors attenuates osteoporosis in patients with diabetes: A nationwide, retrospective, matched-cohort study in Taiwan. J Chin Med Assoc. 2022;85(7):747-753. https://doi.org/10.1097/JCMA.0000000000000743.

69. Yang J, Huang C, Wu S et al. The effects of dipeptidyl peptidase-4 inhibitors on bone fracture among patients with type 2 diabetes mellitus: A network meta-analysis of randomized controlled trials. PLoS One. 2017;12(12):e0187537. https://doi.org/10.1371/journal.pone.0187537.

70. Huang CF, Mao TY, Hwang SJ. The Effects of Switching from Dipeptidyl Peptidase-4 Inhibitors to Glucagon-Like Peptide-1 Receptor Agonists on Bone Mineral Density in Diabetic Patients. Diabetes Metab Syndr Obes. 2023;16:31-36. https://doi.org/10.2147/DMSO.S389964.

71. Hansen MSS, Tencerova M, Frølich J et al. Effects of gastric inhibitory polypeptide, glucagon-like peptide-1 and glucagon-like peptide-1 receptor agonists on Bone Cell Metabolism. Basic Clin Pharmacol Toxicol. 2018;122(1):25-37. https://doi.org/10.1111/bcpt.12850.

72. Pechmann LM, Pinheiro FI, Andrade VFC, Moreira CA. The multiple actions of dipeptidyl peptidase 4 (DPP-4) and its pharmacological inhibition on bone metabolism: a review. Diabetol Metab Syndr. 2024;16(1):175. https://doi.org/10.1186/s13098-024-01412-x.

73. Gurgel Penaforte-Saboia J, Couri CEB, Vasconcelos Albuquerque N et al. Emerging Roles of Dipeptidyl Peptidase-4 Inhibitors in Delaying the Progression of Type 1 Diabetes Mellitus. Diabetes Metab Syndr Obes. 2021;14:565-573. https://doi.org/10.2147/DMSO.S294742.

74. Shao S, Xu Q, Yu X et al. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacol Ther. 2020;209:107503. https://doi.org/10.1016/j.pharmthera.2020.107503.

75. Buzzetti R, Tuomi T, Mauricio D et al. Management of Latent Autoimmune Diabetes in Adults: A Consensus Statement From an International Expert Panel. Diabetes. 2020;69(10):2037-2047. https://doi.org/10.2337/dbi20-0017.

76. Koufakis T, Zografou I, Doumas M, Kotsa K. The Current Place of DPP4 Inhibitors in the Evolving Landscape of Type 2 Diabetes Management: Is It Time to Bid Adieu? Am J Cardiovasc Drugs. 2023;23(6):601-608. https://doi.org/10.1007/s40256-023-00610-8.

77. Osawa S, Kawamori D, Katakami N et al. Significant elevation of serum dipeptidyl peptidase-4 activity in young-adult type 1 diabetes. Diabetes Res Clin Pract. 2016;113:135–142. https://doi.org/10.1016/j.diabres.2015.12.022.

78. Pinheiro MM, Pinheiro FMM. Type 1 diabetes prevention and treatment: Time to think outside the box. J Diabetes. 2023;15(12):1107-1108. https://doi.org/10.1111/1753-0407.13502.

79. Yan X, Li X, Liu B et al. Combination therapy with saxagliptin and vitamin D for the preservation of β-cell function in adult-onset type 1 diabetes: a multi-center, randomized, controlled trial. Signal Transduct Target Ther. 2023;8(1):158. https://doi.org/10.1038/s41392-023-01369-9.

80. Rabinovitch A, Koshelev D, Lagunas-Rangel FA et al. Efficacy of combination therapy with GABA, a DPP-4i and a PPI as an adjunct to insulin therapy in patients with type 1 diabetes. Front Endocrinol (Lausanne). 2023; 14:1171886. https://doi.org/10.3389/fendo.2023.1171886.

81. Penaforte-Saboia JG, Couri CEB, Albuquerque NV et al. PRE1BRAZIL Protocol: A Randomized Controlled Trial to Evaluate the Effectiveness and Safety of the DPP-4 Inhibitor Alogliptin in Delaying the Progression of Stage 2 Type 1 Diabetes. Diabetes Metab Syndr Obes. 2024;17:857-864. https://doi.org/10.2147/DMSO.S437635.

82. Jia L, Huang S, Sun B et al. Pharmacomicrobiomics and type 2 diabetes mellitus: A novel perspective towards possible treatment. Front Endocrinol (Lausanne). 2023 Mar 23;14:1149256. https://doi.org/10.3389/fendo.2023.1149256.

83. Liao X, Song L, Zeng B et al. Alteration of gut microbiota induced by DPP-4i treatment improves glucose homeostasis. EBioMedicine. 2019; 44:665-674. https://doi.org/10.1016/j.ebiom.2019.03.057.

84. Busek P, Duke-Cohan JS, Sedo A. Does DPP-IV Inhibition Offer New Avenues for Therapeutic Intervention in Malignant Disease? Cancers (Basel). 2022;14(9):2072. https://doi.org/10.3390/cancers14092072.

85. Buczyńska A, Kościuszko M, Krętowski AJ, Popławska-Kita A. Exploring the clinical utility of DPP-IV and SGLT2 inhibitors in papillary thyroid cancer: a literature review. Front Pharmacol. 2024;15:1323083. https://doi.org/10.3389/fphar.2024.1323083.

86. Sharma A, Virmani T, Sharma A et al. Potential Effect of DPP-4 Inhibitors Towards Hepatic Diseases and Associated Glucose Intolerance. Diabetes Metab Syndr Obes. 2022;15:1845-1864. https://doi.org/10.2147/DMSO.S369712.

87. Tuersun A, Hou G, Cheng G. Pancreatitis and Pancreatic Cancer Risk Among Patients With Type 2 Diabetes Receiving Dipeptidyl Peptidase 4 Inhibitors: An Updated Meta-Analysis of Randomized Controlled Trials. Clin Ther. 2024: S0149-2918(24)00190-5. https://doi.org/10.1016/j.clinthera.2024.06.015.

88. Salama RM, Mohamed AM, Hamed NS et al. Alogliptin: a novel approach against cyclophosphamide-induced hepatic injury via modulating SIRT1/FoxO1 pathway. Toxicol Res (Camb). 2020;9(4):561-568. https://doi.org/10.1093/toxres/tfaa059.

89. Salama RM, Nasr MM, Abdelhakeem JI et al. Alogliptin attenuates cyclophosphamide-induced nephrotoxicity: a novel therapeutic approach through modulating MAP3K/JNK/SMAD3 signaling cascade. Drug Chem Toxicol. 2022;45(3):1254-1263. https://doi.org/10.1080/01480545.2020.1814319.

90. Alsemeh AE, Abdullah DM. Protective effect of alogliptin against cyclophosphamide-induced lung toxicity in rats: Impact on PI3K/Akt/FoxO1 pathway and downstream inflammatory cascades. Cell Tissue Res. 2022;388(2):417-438. https://doi.org/10.1007/s00441-022-03593-1.

91. Meng J, Yan R, Zhang C et al. Lipids Health Dis. 2023;22(1):219. https://doi.org/10.1186/s12944-023-01985-y.

92. Jiang X, Li J, Yao X, Ding H, Gu A, Zhou Z. Neuroprotective effects of dipeptidyl peptidase 4 inhibitor on Alzheimer's disease: a narrative review. Front Pharmacol. 2024;15:1361651. https://doi.org/10.3389/fphar.2024.1361651.

93. Ngetich E, Lapolla P, Chandrashekar A et al. The role of dipeptidyl peptidase-IV in abdominal aortic aneurysm pathogenesis: A systematic review. Vasc Med. 2022;27(1):77-87. https://doi.org/10.1177/1358863X211034574.

94.


Supplementary files

1. Figure 1. Potential mechanisms of dipeptidyl peptidase-4 inhibitors in the regulation of blood pressure. Adapted from Zhang J. et al. [51].
Subject
Type Исследовательские инструменты
View (1MB)    
Indexing metadata ▾
2. Figure 2. Role of dipeptidyl peptidase-4 in numerous physiological and pathological processes. Adapted from Ngetich E. et al. [93].
Subject
Type Исследовательские инструменты
View (766KB)    
Indexing metadata ▾

Review

For citations:


Ruyatkina L.A., Ruyatkin D.S. Spectrum of effects of dipeptidyl peptidase-4 inhibitors: within and beyond glycemic control (part 2). Diabetes mellitus. 2025;28(5):451-459. (In Russ.) https://doi.org/10.14341/DM13343

Views: 97


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)