Preview

Diabetes mellitus

Advanced search

Diabetes Risk Screening Tools for Prediabetes: A Comprehensive Scoping Review of Evidence and Implementation

https://doi.org/10.14341/DM13324

Abstract

BACKGROUND/OBJECTIVES: Diabetes risk screening tools are essential for identifying individuals with prediabetes and preventing the progression to diabetes. However, systematic reviews focusing on such tools, particularly for prediabetes screening, are scarce. This scoping review examines the characteristics, development methods, and effectiveness of diabetes risk assessment tools in identifying prediabetes and predicting its progression to diabetes.

MATERIALS AND METHODS: A scoping review was conducted following the Joanna Briggs Institute methodology. Searches were performed in PubMed, ScienceDirect, and Google Scholar, complemented by citation tracking. Eligible studies included asymptomatic adults with prediabetes. Studies were excluded if they lacked relevant data, were not in English, or had no validation measures. Data were extracted independently by two reviewers and synthesized narratively, focusing on study design, risk model features, performance statistics, and quality assessments.

RESULTS: Fourteen studies met the inclusion criteria, covering 26 risk models. Sensitivity and specificity were used in 9 risk screening tools, with Hazard Ratios and C-Statistics assessing diabetes progression in six. Common risk factors included age, BMI, family history of diabetes, and hypertension. Non-invasive tools and predictive models showed promise, with most studies assessed as having a low risk of bias using QUADAS-2. High-sensitivity tools utilizing FBG, HbA1c, and OGTT cutoffs demonstrated effectiveness but require balancing cost and feasibility for broader implementation.

CONCLUSION: A range of different screening tools has been tested that could identify people with prediabetes or a high risk of developing type 2 diabetes. However, where sufficient evidence was available to compare tools across studies the performance of these tools was inconsistent. Several tools have only been investigated in single studies, with uncertainty around their wider generalisability. Clinicians or researchers wishing to screen people for prediabetes or a high risk of developing type 2 diabetes using any of these tools should be aware of their potential limitations.

The full text of the article is available in the electronic version of the journal on the website www.dia-endojournals.ru

About the Authors

P. Wongrith
http://orcid.org/0000-0002-8242-2893
Thammasart University; Walailak University
Thailand

Paleeratana Wongrith - MSc (Health Education & Behavioral Science), Doctoral candidate, Assistant Professor

222 Thaiburi, Thasala District Nakhonsrithammarat, Thailand, 80160


Competing Interests:

No declare



S. Dangkrajang
Thammasart University
Thailand

Suphika Dangkrajang - ED.D., Assistant Professor.

Bangkok


Competing Interests:

No declare



T. T. Nam
Can Tho University of Medicine and Pharmacy
Viet Nam

Truong Thanh Nam - PhD, Assistant Professor.

Can Tho


Competing Interests:

No declare



References

1. Aekplakorn, W., Bunnag, P., Woodward, M., Sritara, P., Cheepudomwit, S., Yamwong, S., Yipintsoi, T., & Rajatanavin, R. (2006). A risk score for predicting incident diabetes in the Thai population. Diabetes Care, 29(8), 1872-1877. https://doi.org/10.2337/dc05-2141

2. Aekplakorn, W., Tantayotai, V., Numsangkul, S., Sripho, W., Tatsato, N., Burapasiriwat, T., Pipatsart, R., Sansom, P., Luckanajantachote, P., Chawarokorn, P., Thanonghan, A., Lakhamkaew, W., Mungkung, A., Boonkean, R., Chantapoon, C., Kungsri, M., Luanseng, K., & Chaiyajit, K. (2015). Detecting Prediabetes and Diabetes: Agreement between Fasting Plasma Glucose and Oral Glucose Tolerance Test in Thai Adults. Journal of Diabetes Research, 2015, 396505. https://doi.org/10.1155/2015/396505

3. Agarwal, G., Guingona, M. M., Gaber, J., Angeles, R., Rao, S., & Cristobal, F. (2019). Choosing the most appropriate existing type 2 diabetes risk assessment tool for use in the Philippines: a case-control study with an urban Filipino population. BMC Public Health, 19(1), 1169. https://doi.org/10.1186/s12889-019-7402-0

4. Agarwal, G., Jiang, Y., Rogers Van Katwyk, S., Lemieux, C., Orpana, H., Mao, Y., Hanley, B., Davis, K., Leuschen, L., & Morrison, H. (2018). Effectiveness of the CANRISK tool in the identification of dysglycemia in First Nations and Métis in Canada. Health Promot Chronic Dis Prev Can, 38(2), 55-63. https://doi.org/10.24095/hpcdp.38.2.02 (Efficacité de l’outil CANRISK pour détecter la dysglycémie chez les membres des Premières Nations et les Métis au Canada.)

5. American Diabetes, A. (2020). 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2021. Diabetes Care, 44(Supplement_1), S15-S33. https://doi.org/10.2337/dc21-S002

6. American Diabetes Association. (2019a). 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2020. Diabetes Care, 43(Supplement_1), S14-S31. https://doi.org/10.2337/dc20-S002

7. American Diabetes Association. (2019b). 3. Prevention or Delay of Type 2 Diabetes: Standards of Medical Care in Diabetes—2020. Diabetes Care, 43(Supplement_1), S32-S36. https://doi.org/10.2337/dc20-S003

8. American Diabetes Association. (2022). Standards of Medical Care in Diabetes—2022 Abridged for Primary Care Providers. Clinical Diabetes, 40(1), 10-38. https://doi.org/10.2337/cd22-as01

9. Amisi, C. A. (2022). Markers of insulin resistance in Polycystic ovary syndrome women: An update. World Journal of Diabetes, 13(3), 129.

10. Bahijri, S., Al-Raddadi, R., Ajabnoor, G., Jambi, H., Al Ahmadi, J., Borai, A., Barengo, N. C., & Tuomilehto, J. (2020). Dysglycemia risk score in Saudi Arabia: A tool to identify people at high future risk of developing type 2 diabetes. J Diabetes Investig, 11(4), 844-855. https://doi.org/10.1111/jdi.13213

11. Baker, P., & El-Osta, A. (2019). Who self‐cares wins: a global perspective on men and self-care.

12. Barber, S. R., Davies, M. J., Khunti, K., & Gray, L. J. (2014). Risk assessment tools for detecting those with pre-diabetes: a systematic review. Diabetes Res Clin Pract, 105(1), 1-13. https://doi.org/10.1016/j.diabres.2014.03.007

13. Bethel, M. A., Chacra, A. R., Deedwania, P., Fulcher, G. R., Holman, R. R., Jenssen, T., Kahn, S. E., Levitt, N. S., McMurray, J. J., Califf, R. M., Raptis, S. A., Thomas, L., Sun, J. L., & Haffner, S. M. (2013). A novel risk classification paradigm for patients with impaired glucose tolerance and high cardiovascular risk. Am J Cardiol, 112(2), 231-237. https://doi.org/10.1016/j.amjcard.2013.03.019

14. Beulens, J., Rutters, F., Rydén, L., Schnell, O., Mellbin, L., Hart, H. E., & Vos, R. C. (2019). Risk and management of pre-diabetes. Eur J Prev Cardiol, 26(2_suppl), 47-54. https://doi.org/10.1177/2047487319880041

15. Blonde, L., Umpierrez, G. E., McGill, J. B., Reddy, S. S., Berga, S. L., Bush, M., Chandrasekaran, S., DeFronzo, R. A., Einhorn, D., & Galindo, R. (2022). American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan—2022 Update. Endocrine Practice.

16. Booth, F. W., Roberts, C. K., & Laye, M. J. (2012). Lack of exercise is a major cause of chronic diseases. Compr Physiol, 2(2), 1143-1211. https://doi.org/10.1002/cphy.c110025

17. Cho, N. H., Shaw, J. E., Karuranga, S., Huang, Y., da Rocha Fernandes, J. D., Ohlrogge, A. W., & Malanda, B. (2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract, 138, 271-281. https://doi.org/10.1016/j.diabres.2018.02.023

18. Dhippayom, T., Chaiyakunapruk, N., & Krass, I. (2014). How diabetes risk assessment tools are implemented in practice: A systematic review. Diabetes Research and Clinical Practice, 104(3), 329-342. https://doi.org/https://doi.org/10.1016/j.diabres.2014.01.008

19. Doddamani, P., Ramanathan, N., Swetha, N. K., & Suma, M. N. (2021). Comparative Assessment of ADA, IDRS, and FINDRISC in Predicting Prediabetes and Diabetes Mellitus in South Indian Population. J Lab Physicians, 13(1), 36-43. https://doi.org/10.1055/s-0041-1727557

20. Dreher, M. L. (2018). Dietary patterns and whole plant foods in aging and disease. Springer.

21. Garay, J., Camacho, P. A., Lopez-Lopez, J., Alvernia, J., Garcia, M., Cohen, D. D., Calderon, C., & Lopez-Jaramillo, P. (2019). Survey of knowledge for diagnosing and managing prediabetes in Latin-America: cross-sectional study. Diabetol Metab Syndr, 11, 102. https://doi.org/10.1186/s13098-019-0500-4

22. Guess, N. D., Caengprasath, N., Dornhorst, A., & Frost, G. S. (2015). Adherence to NICE guidelines on diabetes prevention in the UK: Effect on patient knowledge and perceived risk. Prim Care Diabetes, 9(6), 407-411. https://doi.org/10.1016/j.pcd.2015.04.005

23. Hippisley-Cox, J., & Coupland, C. (2017). Development and validation of QDiabetes-2018 risk prediction algorithm to estimate future risk of type 2 diabetes: cohort study. BMJ, 359, j5019. https://doi.org/10.1136/bmj.j5019

24. IDF. (2021). IDF Diabetes Atlas 10th edition, https://diabetesatlas.org/idfawp/resource-files/2021/07/IDF_Atlas_10th_Edition_2021.pdf

25. Jellinger, P. S., Handelsman, Y., Rosenblit, P. D., Bloomgarden, Z. T., Fonseca, V. A., Garber, A. J., Grunberger, G., Guerin, C. K., Bell, D. S. H., Mechanick, J. I., Pessah-Pollack, R., Wyne, K., Smith, D., Brinton, E. A., Fazio, S., & Davidson, M. (2017). American Association of Clinical Endocrinologists and American College of Endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease. Endocr Pract, 23(Suppl 2), 1-87. https://doi.org/10.4158/ep171764.Appgl

26. Jiang, Y., Rogers Van Katwyk, S., Mao, Y., Orpana, H., Argwal, G., de Groh, M., Skinner, M., Clarke, R., & Morrison, H. (2017). Assessment of dysglycemia risk in the Kitikmeot region of Nunavut: using the CANRISK tool. Health Promot Chronic Dis Prev Can, 37(4), 114-122. https://doi.org/10.24095/hpcdp.37.4.02 (Évaluation du risque de dysglycémie dans la région de Kitikmeot (Nunavut) au moyen de l’outil CANRISK.)

27. Kaneko, K., Yatsuya, H., Li, Y., Uemura, M., Chiang, C., Hirakawa, Y., Ota, A., Tamakoshi, K., & Aoyama, A. (2020). Risk and population attributable fraction of metabolic syndrome and impaired fasting glucose for the incidence of type 2 diabetes mellitus among middle-aged Japanese individuals: Aichi Worker's Cohort Study. J Diabetes Investig, 11(5), 1163-1169. https://doi.org/10.1111/jdi.13230

28. Lin, L., Wang, A., He, Y., Wang, W., Gao, Z., Tang, X., Yan, L., Wan, Q., Luo, Z., Qin, G., Chen, L., Mu, Y., & Dou, J. (2021). Effects of the hemoglobin glycation index on hyperglycemia diagnosis: Results from the REACTION study. Diabetes Research and Clinical Practice, 180, 109039. https://doi.org/https://doi.org/10.1016/j.diabres.2021.109039

29. Luo, H., Chen, Z., Bell, R., Rafferty, A. P., Gaskins Little, N. R., & Winterbauer, N. (2020). Health Literacy and Health Behaviors Among Adults With Prediabetes, 2016 Behavioral Risk Factor Surveillance System. Public Health Rep, 135(4), 492-500. https://doi.org/10.1177/0033354920927848

30. Mata-Cases, M., Artola, S., Escalada, J., Ezkurra-Loyola, P., Ferrer-García, J. C., Fornos, J. A., Girbés, J., & Rica, I. (2015). Consensus on the detection and management of prediabetes. Consensus and Clinical Guidelines Working Group of the Spanish Diabetes Society. Endocrinol Nutr, 62(3), e23-36. https://doi.org/10.1016/j.endonu.2014.10.008 (Consenso sobre la detección y el manejo de la prediabetes. Grupo de Trabajo de Consensos y Guías Clínicas de la Sociedad Española de Diabetes.)

31. McCullough, D., Harrison, T., Boddy, L. M., Enright, K. J., Amirabdollahian, F., Schmidt, M. A., Doenges, K., Quinn, K., Reisdorph, N., & Mazidi, M. (2022). The Effect of Dietary Carbohydrate and Fat Manipulation on the Metabolome and Markers of Glucose and Insulin Metabolism: A Randomised Parallel Trial. Nutrients, 14(18), 3691.

32. Memish, Z. A., Chang, J. L., Saeedi, M. Y., Al Hamid, M. A., Abid, O., & Ali, M. K. (2015). Screening for Type 2 Diabetes and Dysglycemia in Saudi Arabia: Development and Validation of Risk Scores. Diabetes Technol Ther, 17(10), 693-700. https://doi.org/10.1089/dia.2014.0267

33. Mirasol, R., Thai, A. C., Salahuddin, A. A., Tan, K., Deerochanawong, C., Mohamed, M., Saraswati, M. R., Sethi, B. K., Shah, S., Soetedjo, N. N., Suraamornkul, S., Tan, R., & Uddin, F. (2017). A Consensus of Key Opinion Leaders on the Management of Pre-diabetes in the Asia-Pacific Region. J ASEAN Fed Endocr Soc, 32(1), 6-12. https://doi.org/10.15605/jafes.032.01.02

34. Numpong S, T. Y., Sungkhabut W. (2020). A systematic literature review of the diagnosis of drug resistant tuberculosis using Xpert MTB/RIF assay and its potential impacts on treatment outcomes [Research article]. https://he01.tci-thaijo.org/index.php/DCJ/article/view/216821, 46(3), 303-312. https://doi.org/ https://doi.org/10.14456/dcj.2020.29

35. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., . . . Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71

36. Qiu, L., Wang, W., Sa, R., & Liu, F. (2021). Prevalence and Risk Factors of Hypertension, Diabetes, and Dyslipidemia among Adults in Northwest China. Int J Hypertens, 2021, 5528007. https://doi.org/10.1155/2021/5528007

37. Rauh, S. P., Rutters, F., van der Heijden, A., Luimes, T., Alssema, M., Heymans, M. W., Magliano, D. J., Shaw, J. E., Beulens, J. W., & Dekker, J. M. (2018). External Validation of a Tool Predicting 7-Year Risk of Developing Cardiovascular Disease, Type 2 Diabetes or Chronic Kidney Disease. J Gen Intern Med, 33(2), 182-188. https://doi.org/10.1007/s11606-017-4231-7

38. Risøy, A. J., Kjome, R. L. S., Sandberg, S., & Sølvik, U. (2018). Risk assessment and HbA1c measurement in Norwegian community pharmacies to identify people with undiagnosed type 2 diabetes - A feasibility study. PLoS One, 13(2), e0191316. https://doi.org/10.1371/journal.pone.0191316

39. Rosedale, M., Strauss, S. M., Knight, C., & Malaspina, D. (2015). Awareness of Prediabetes and Diabetes among Persons with Clinical Depression. International Journal of Endocrinology, 2015, 839152. https://doi.org/10.1155/2015/839152

40. Rowan, C. P., Miadovnik, L. A., Riddell, M. C., Rotondi, M. A., Gledhill, N., & Jamnik, V. K. (2014). Identifying persons at risk for developing type 2 diabetes in a concentrated population of high risk ethnicities in Canada using a risk assessment questionnaire and point-of-care capillary blood HbA1c measurement. BMC Public Health, 14, 929. https://doi.org/10.1186/1471-2458-14-929

41. Schmidt, M. I., Bracco, P. A., Yudkin, J. S., Bensenor, I. M., Griep, R. H., Barreto, S. M., Castilhos, C. D., & Duncan, B. B. (2019). Intermediate hyperglycaemia to predict progression to type 2 diabetes (ELSA-Brasil): an occupational cohort study in Brazil. Lancet Diabetes Endocrinol, 7(4), 267-277. https://doi.org/10.1016/s2213-8587(19)30058-0

42. Srugo, S. A., Morrison, H. I., Villeneuve, P. J., de Groh, M., & Jiang, Y. (2020). Assessing Dysglycemia Risk Among Younger Adults: A Validation of the Canadian Diabetes Risk Questionnaire. Can J Diabetes, 44(5), 379-386.e373. https://doi.org/10.1016/j.jcjd.2019.11.002

43. Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., Stein, C., Basit, A., Chan, J. C. N., Mbanya, J. C., Pavkov, M. E., Ramachandaran, A., Wild, S. H., James, S., Herman, W. H., Zhang, P., Bommer, C., Kuo, S., Boyko, E. J., & Magliano, D. J. (2022). IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract, 183, 109119. https://doi.org/10.1016/j.diabres.2021.109119

44. Vanderwood, K. K., Kramer, M. K., Miller, R. G., Arena, V. C., & Kriska, A. M. (2015). Evaluation of non-invasive screening measures to identify individuals with prediabetes. Diabetes Res Clin Pract, 107(1), 194-201. https://doi.org/10.1016/j.diabres.2014.06.003

45. Vanderwood, K. K., Kramer, M. K., Miller, R. G., Arena, V. C., & Kriska, A. M. (2015). Evaluation of non-invasive screening measures to identify individuals with prediabetes. Diabetes Research and Clinical Practice, 107(1), 194-201. https://doi.org/https://doi.org/10.1016/j.diabres.2014.06.003

46. Wade, R., Corbett, M., & Eastwood, A. (2013). Quality assessment of comparative diagnostic accuracy studies: our experience using a modified version of the QUADAS-2 tool. Res Synth Methods, 4(3), 280-286. https://doi.org/10.1002/jrsm.1080

47. Whiting, P., Rutjes, A., Westwood, M., Mallett, S., Deeks, J., Reitsma, J., Leeflang, M., Sterne, J., & Bossuyt, P. (2011). QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Annals of Internal Medicine, 155, 529-536. https://doi.org/10.1059/0003-4819-155-8-201110180-00009

48. Xu, S., Coleman, R. L., Wan, Q., Gu, Y., Meng, G., Song, K., Shi, Z., Xie, Q., Tuomilehto, J., Holman, R. R., Niu, K., & Tong, N. (2022). Risk prediction models for incident type 2 diabetes in Chinese people with intermediate hyperglycemia: a systematic literature review and external validation study. Cardiovasc Diabetol, 21(1), 182. https://doi.org/10.1186/s12933-022-01622-5

49. Xu, S., Scott, C. A. B., Coleman, R. L., Tuomilehto, J., & Holman, R. R. (2021). Predicting the risk of developing type 2 diabetes in Chinese people who have coronary heart disease and impaired glucose tolerance. J Diabetes, 13(10), 817-826. https://doi.org/10.1111/1753-0407.13175

50. Yan, F., Cha, E., Lee, E. T., Mayberry, R. M., Wang, W., & Umpierrez, G. (2016). A Self-assessment Tool for Screening Young Adults at Risk of Type 2 Diabetes Using Strong Heart Family Study Data. Diabetes Educ, 42(5), 607-617. https://doi.org/10.1177/0145721716658709

51. Yeh, H.-C., Duncan, B. B., Schmidt, M. I., Wang, N.-Y., & Brancati, F. L. (2010). Smoking, smoking cessation, and risk for type 2 diabetes mellitus: a cohort study. Annals of Internal Medicine, 152(1), 10-17.

52. Zand, A., Ibrahim, K., & Patham, B. (2018). Prediabetes: Why Should We Care? Methodist Debakey Cardiovasc J, 14(4), 289-297. https://doi.org/10.14797/mdcj-14-4-289


Supplementary files

1. Appendix
Subject
Type Исследовательские инструменты
Download (85KB)    
Indexing metadata ▾

Review

For citations:


Wongrith P., Dangkrajang S., Nam T. Diabetes Risk Screening Tools for Prediabetes: A Comprehensive Scoping Review of Evidence and Implementation. Diabetes mellitus. 2025;28(4):348-358. https://doi.org/10.14341/DM13324

Views: 21


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)