Preview

Diabetes mellitus

Advanced search

Impact of Hyperlipidemia on Endothelial Dysfunction and Arginine Metabolism in Diabetic Patients: Implications for Nitric Oxide Dysregulation and Increased Cardiovascular Risk

https://doi.org/10.14341/DM13311

Abstract

BACKGROUND. Type 2 Diabetes Mellitus (T2DM) is a primary public health concern globally, characterized by chronic hyperglycemia, insulin resistance, impaired beta-cell function. Endothelial dysfunction is a hallmark of diabetes and is exacerbated by hyperlipidemia.

AIM. This study investigates the impact of hyperlipidemia on nitric oxide synthesis, arginine metabolism, and vascular health markers in T2DM.

MATERIALS AND METHODS. A total of 120 participants were included in this cross-sectional, comparative study. Serum methylarginine derivatives (Asymmetric dimethyl arginine (ADMA), Symmetric dimethyl arginine (SDMA), L-N Mono-methylarginine (L-NMMA) and related metabolites (arginine, homoarginine, citrulline, ornithine) levels were measured in three groups: diabetes with hyperlipidemia (DM-HL), diabetes with normolipidemia (DM-NL), and healthy controls (HC) using API SCIEX 3200 LC-MS/MS methods. Statistical comparisons between groups were performed using IBM SPSS 26.0 to assess the influence of hyperlipidemia on these markers.

RESULTS. ADMA and SDMA levels were significantly elevated in DM-HL group compared to DM-NL and HC (p=0.001, p=0.000 respectively), indicating increased endothelial dysfunction and potential dyslipidemia-induced renal or vascular impairment. Reduced arginine and homoarginine levels in diabetic groups suggest impaired nitric oxide synthesis and altered urea cycle function (p=0.013, p=0.000 respectively). Notably, the DM-HL group exhibited significantly higher L-NMMA levels (p=0.001). It disrupted metabolic ratios (e.g., SDMA/ADMA, arginine/ADMA, and homoarginine/ADMA), reflecting enhanced nitric oxide inhibition and reduced bioavailability. Hyperlipidemia significantly exacerbated these disruptions, as evidenced by altered citrulline/arginine and citrulline/ADMA ratios, underscoring its additive impact on endothelial dysfunction.

CONCLUSIONS. Hyperlipidemia amplifies the adverse effects of diabetes on endothelial function by exacerbating nitric oxide inhibition, oxidative stress, and arginine metabolism dysregulation. Key biomarkers and metabolic ratios, particularly ADMA and SDMA-related indices, provide valuable insights into cardiovascular risk in this population. Therapeutic strategies targeting lipid management, arginine supplementation, and ADMA reduction could improve vascular health and mitigate cardiovascular complications in DM-HL.

About the Authors

M. A. Bik
Selcuk University
Turkey

Mohammad Ahmad Bik - PhD, Researcher, Faculty of Medicine, Department of Medical Biochemistry.

Konya


Competing Interests:

None



E. Almaghrebi
Selcuk University
Turkey

Eissa Almaghrebi - PhD, Researcher, Faculty of Medicine, Department of Medical Biochemistry.

Konya


Competing Interests:

None



F. Akat
Selcuk University
Turkey

Fatma Akat - PhD, Researcher, Faculty of Medicine, Department of Medical Biochemistry.

Konya


Competing Interests:

None



K. Gharab
Mustansiriyah University, National Diabetes Center
Iraq

Karam Gharab - PhD, Assistant Lecturer.

Falastin Street, Baghdad


Competing Interests:

None



F. Sak
Selcuk University
Turkey

Firdevs Sak - PhD, Researcher, Faculty of Medicine, Department of Medical Biochemistry.

Konya


Competing Interests:

None



F. Karaman
Selcuk University
Turkey

Fadime Karaman – MSc, Faculty of Medicine, Department of Medical Biochemistry.

Konya


Competing Interests:

None



A. Ünlü
Selcuk University
Turkey

Ali Ünlü - MD, PhD, Professor, Faculty of Medicine, Department of Medical Biochemistry.

Konya


Competing Interests:

None



References

1. Valaiyapathi B, Gower B, Ashraf AP. Pathophysiology of Type 2 Diabetes in Children and Adolescents. Curr Diabetes Rev. 2020;16(3):220-229. doi: https://doi.org/10.2174/1573399814666180608074510

2. Banday MZ, Sameer AS, Nissar S. Pathophysiology of diabetes: An overview. Avicenna J Med. 2020;10(4):174-188. doi: https://doi.org/10.4103/ajm.ajm_53_20

3. Horton WB, Barrett EJ. Microvascular Dysfunction in Diabetes Mellitus and Cardiometabolic Disease. Endocr Rev. 2021;42(1):29-55. doi: https://doi.org/10.1210/endrev/bnaa025

4. Luo Y, Zhang W, Qin G. Metabolomics in diabetic nephropathy: Unveiling novel biomarkers for diagnosis (Review). Mol Med Rep. 2024;30(3):156. doi: https://doi.org/10.3892/mmr.2024.13280

5. Mortensen KM, Itenov TS, Stensballe J, et al. Changes in nitric oxide inhibitors and mortality in critically ill patients: a cohort study. Ann Intensive Care. 2024;14(1):133. doi: https://doi.org/10.1186/s13613-024-01362-7

6. Naderi-Meshkin H, Setyaningsih WAW. Endothelial Cell Dysfunction: Onset, Progression, and Consequences. Front Biosci (Landmark Ed). 2024;29(6):223. doi: https://doi.org/10.31083/j.fbl2906223

7. Wu G, Meininger CJ, McNeal CJ, Bazer FW, Rhoads JM. Role of L-arginine in nitric oxide synthesis and health in humans. Amino acids in nutrition and health. Springer; 2021:167-187.

8. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829-837d. doi: https://doi.org/10.1093/eurheartj/ehr304

9. Yang DR, Wang MY, Zhang CL, Wang Y. Endothelial dysfunction in vascular complications of diabetes: a comprehensive review of mechanisms and implications. Front Endocrinol (Lausanne). 2024;15:1359255. doi: https://doi.org/10.3389/fendo.2024.1359255

10. Wang X, He B. Endothelial dysfunction: molecular mechanisms and clinical implications. MedComm (2020). 2024;5(8):e651. doi: https://doi.org/10.1002/mco2.651

11. Alshuwayer NA. Elucidation of the role of methylarginine metabolism in regulation of nitric oxide production and inflammation. University of Glasgow; 2024.

12. Unlu A, Eryavuz Onmaz D, Abusoglu S, Abusoglu G. HPLC and LC-MS/MS measurement methods for the quantification of asymmetric dimethylarginine (ADMA) and related metabolites. Turk Biyokim Derg. 2021;46(4):327-347.

13. Janaszak-Jasiecka A, Płoska A, Wierońska JM, Dobrucki LW, Kalinowski L. Endothelial dysfunction due to eNOS uncoupling: molecular mechanisms as potential therapeutic targets. Cell Mol Biol Lett. 2023;28(1):21. doi: https://doi.org/10.1186/s11658-023-00423-2

14. Janaszak-Jasiecka A, Siekierzycka A, Płoska A, Dobrucki IT, Kalinowski L. Endothelial Dysfunction Driven by Hypoxia-The Influence of Oxygen Deficiency on NO Bioavailability. Biomolecules. 2021;11(7):982. doi: https://doi.org/10.3390/biom11070982

15. Gajecki D, Gawryś J, Wiśniewski J, Fortuna P, Szahidewicz-Krupska E, Doroszko A. A Cross-Talk between the Erythrocyte L-Arginine/ADMA/Nitric Oxide Metabolic Pathway and the Endothelial Function in Subjects with Type 2 Diabetes Mellitus. Nutrients. 2021;13(7):2306. doi: https://doi.org/10.3390/nu13072306

16. Chan NN, Chan JC. Asymmetric dimethylarginine (ADMA): a potential link between endothelial dysfunction and cardiovascular diseases in insulin resistance syndrome? Diabetologia. 2002;45(12):1609-1616. doi: https://doi.org/10.1007/s00125-002-0975-6

17. Willeit P, Freitag DF, Laukkanen JA, et al. Asymmetric dimethylarginine and cardiovascular risk: systematic review and meta-analysis of 22 prospective studies. J Am Heart Assoc. 2015;4(6):e001833. doi: https://doi.org/10.1161/JAHA.115.001833

18. Lee W, Lee HJ, Jang HB, et al. Asymmetric dimethylarginine (ADMA) is identified as a potential biomarker of insulin resistance in skeletal muscle. Scientific Reports. 2018;8(1):2133. doi: https://doi.org/10.1038/s41598-018-20549-0

19. Blackwell S. The biochemistry, measurement and current clinical significance of asymmetric dimethylarginine. Ann Clin Biochem. 2010;47(Pt1):17-28. doi: https://doi.org/10.1258/acb.2009.009196

20. Tomlinson B, Patil NG, Fok M, Lam CWK. Managing dyslipidemia in patients with Type 2 diabetes. Expert Opin Pharmacother. 2021;22(16):2221-2234. doi: https://doi.org/10.1080/14656566.2021.1912734

21. Xie M, Li X, Chen L, et al. The crosstalks between vascular endothelial cells, vascular smooth muscle cells, and adventitial fibroblasts in vascular remodeling. Life Sci. 2025;361:123319. doi: https://doi.org/10.1016/j.lfs.2024.123319

22. Çomaklı H, Ahmad Bik M, Ünlü A, et al. The Role of L-Arginine Metabolism and Endogenous Dimethylarginine in Chronic Venous Insufficiency. Indian J Clin Biochem. 2025:1-9. doi: https://doi.org/10.1007/s12291-025-01327-y

23. Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 2018;100:1-19. doi: https://doi.org/10.1016/j.vph.2017.05.005

24. An Y, Xu BT, Wan SR, et al. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovasc Diabetol. 2023;22(1):237. doi: https://doi.org/10.1186/s12933-023-01965-7

25. Ray R, Shah AM. NADPH oxidase and endothelial cell function. Clin Sci (Lond). 2005;109(3):217-226. doi: https://doi.org/10.1042/CS20050067

26. Lee H, Jose PA. Coordinated Contribution of NADPH Oxidase- and Mitochondria-Derived Reactive Oxygen Species in Metabolic Syndrome and Its Implication in Renal Dysfunction. Front Pharmacol. 2021;12:670076. doi: https://doi.org/10.3389/fphar.2021.670076

27. Shah MS, Brownlee M. Molecular and Cellular Mechanisms of Cardiovascular Disorders in Diabetes. Circ Res. 2016;118(11):1808-1829. doi: https://doi.org/10.1161/CIRCRESAHA.116.306923

28. Onmaz DE, Isık SMT, Abusoglu S, et al. Serum ADMA levels were positively correlated with EDSS scores in patients with multiple sclerosis. J Neuroimmunol. 2021;353:577497. doi: https://doi.org/10.1016/j.jneuroim.2021.577497

29. Hosaf M, Abusoglu S, Avci A, et al. Total methylated arginine load as a risk parameter in subjects with masked hypertension. Clin Exp Hypertens. 2020;42(2):126-130. doi: https://doi.org/10.1080/10641963.2019.1583246

30. Onmaz DE, Tezcan D, Abusoglu S, et al. Raised total methylated arginine load in patients with gout. Biomark Med. 2022;16(13):993-1004. doi: https://doi.org/10.2217/bmm-2022-0368

31. Wijnands KA, Castermans TM, Hommen MP, Meesters DM, Poeze M. Arginine and citrulline and the immune response in sepsis. Nutrients. 2015;7(3):1426-1463. doi: https://doi.org/10.3390/nu7031426

32. Böger RH, Bode-Böger SM, Szuba A, et al. Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation. 1998;98(18):1842-1847. doi: https://doi.org/10.1161/01.cir.98.18.1842

33. Riccioni G, Scotti L, D’Orazio N, et al. ADMA/SDMA in elderly subjects with asymptomatic carotid atherosclerosis: values and site-specific association. Int J Mol Sci. 2014;15(4):6391-6398. doi: https://doi.org/10.3390/ijms15046391


Supplementary files

Review

For citations:


Bik M.A., Almaghrebi E., Akat F., Gharab K., Sak F., Karaman F., Ünlü A. Impact of Hyperlipidemia on Endothelial Dysfunction and Arginine Metabolism in Diabetic Patients: Implications for Nitric Oxide Dysregulation and Increased Cardiovascular Risk. Diabetes mellitus. 2025;28(6):568-577. https://doi.org/10.14341/DM13311

Views: 9

JATS XML

ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)