The Significance of Oxidized Low-Density Lipoproteins and Receptors LOX-1 in Type 2 Diabetes Mellitus
https://doi.org/10.14341/DM13203
Abstract
INTRODUCTION. Type 2 diabetes mellitus (T2DM) occurs in 8.5% of the adult population with a tendency to increase. A characteristic feature of T2DM is dyslipidemia. One of its manifestations includes accumulation of increased concentration of oxidized low-density lipoproteins (ox-LDL) in circulation. Ox-LDL molecules act on cells through LOX-1 receptors.
THE PURPOSE OF THE REVIEW is to demonstrate results of studies presented in publications of 2010–2024 (PubMed, RSCI) indicating the pathogenetic role of ox-LDL and its LOX-1 receptors in T2DM development and course.
MATERIALS AND METHODS. In the analysis of more than 2800 literature sources (PubMed), in which together with term “diabetes mellitus” keywords are found: ox-LDL (1150 sources) or LOX-1 (159 sources), as well as OLR1 (106 sources), 50 sources were identified that are directly related to T2DM and the studied functionally related markers — the LOX-1 receptor and its ligand ox-LDL.
RESULTS. LOX-1 is scavenger receptor that uses ox-LDL as its proper ligand. Gene OLR1 encodes ox-LDL receptor, LOX-1. The linking of T2DM and circulating levels of ox-LDL is bidirectional. The emerging insulin resistance directly correlates with oxidation of low-density lipoproteins, which is observed in more than 80% of patients and depends on the duration of T2DM. High plasma ligand levels are associated with increased type 2 diabetes risk. The mechanism of this association is thought to be related to functionally significant expression of LOX-1 on pancreatic cells. It was shown that pancreatic β-cells in the presence of ox-LDL increased production of the inducible early repressor of the cAMP signaling pathway, ICER. As result of ICER action, insulin production and secretion ceased. Increased ox-LDL concentrations are a pathogenetically significant factor in the development of atherosclerotic vascular lesions, as they stimulate the generation of foam cells. Ox-LDL-LOX-1-mediated interactions on the vascular surface led to endothelial dysfunction with subsequent development of tissue hypoperfusion and organ dysfunction.
CONCLUSION. Circulating ox-LDL, in interaction with its receptor LOX-1, makes a significant contribution to the development of T2DM, promoting its progression. Increased concentration of ox-LDL in blood increases the risk of severe T2DM, leading to endothelial dysfunction and promoting the development of atherosclerotic vascular lesions.
About the Authors
D. L. FetlamRussian Federation
Dmitry L. Fetlam
Moscow
Competing Interests:
none
A. G. Chumachenko
Russian Federation
Anastasya G. Chumachenko - PhD in Biology; ResearcherID: B-1531-2015; Scopus Author ID: 357211375453
Moscow
Competing Interests:
none
V. M. Pisarev
Russian Federation
Vladimir M. Pisarev - MD, PhD, Professor; ResearcherID: E-1373-2012; Scopus Author ID: 7006540472.
Petrovka street, 25/2, 107031 Moscow
Competing Interests:
none
References
1. Henning RJ. Type-2 diabetes mellitus and cardiovascular disease. Future Cardiol. 2018;14(6):491-509. https://doi.org/10.2217/fca-2018-0045
2. Neimark MI, Kloster EA, Bulganin AA, et al. Meglumine Sodium Succinate in Diabetic Ketoacidosis. General Reanimatology. 2023;19(3):12-19. https://doi.org/10.15360/1813-9779-2023-3-12-19
3. Kuzan A, Królewicz E, Kustrzeba-Wójcicka I, et al. How Diabetes and Other Comorbidities of Elderly Patients and Their Treatment Influence Levels of Glycation Products. Int J Environ Res Public Health. 2022;19(12):7524. https://doi.org/10.3390/ijerph19127524
4. Dedov II, Shestakova MV, Vikulova OK, et al. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010–2022. Diabetes mellitus. 2023;26(2):104-123 (In Russ.). https://doi.org/10.14341/DM13035
5. Ershova AI, Al Rashi DO, Ivanova AA, et al. Secondary hyperlipidemias: etiology and pathogenesis. Russian Journal of Cardiology. 2019;(5):74-81. (In Russ.)
6. Dedov II, Shestakova MV, Vikulova OK, et al. Epidemiological characteristics of diabetes mellitus in the Russian Federation: clinical and statistical analysis according to the Federal diabetes register data of 01.01.2021. Diabetes mellitus. 2021;24(3):204-221. (In Russ.). https://doi.org/10.14341/DM12759
7. Kornienko EA. Prophylaxis of Reperfusion Complications in Treatment of Acute Myocardial Infarction in Type 2 Diabetes Mellitus Patients. General Reanimatology. 2019;15(3):4-18. (In Russ.) https://doi.org/10.15360/1813-9779-2019-3-4-18
8. Chumachenko AG, Grigoriev EK, Pisarev VM. Contribution of AGTR 1 Promoter Region Polymorphism to the Progression and Outcome of Sepsis in Patients with Various Comorbidities. General Reanimatology. 2021;17(5):35-51. https://doi.org/10.15360/1813-9779-2021-5-35-51
9. Artykbaeva GM, Saatov TS. Relationship between severe acute respiratory syndrome caused by SARS- coronavirus 2 and diabetes mellitus (review). Diabetes mellitus. 2023;26(1):66-74. (In Russ.) https://doi.org/10.14341/DM12900
10. Rey-Reñones C, Martinez-Torres S, Martín-Luján FM, et al. Type 2 Diabetes Mellitus and COVID-19: A Narrative Review. Biomedicines. 2022;10(9):2089. https://doi.org/10.3390/biomedicines10092089
11. Mokrysheva NG, Shestakova MV, Vikulova OK, et al. Analysis of risk factors for COVID-19-related fatal outcome in 337991 patients with type 1 and type 2 diabetes mellitus in 2020–2022 years: Russian nationwide retrospective study. Diabetes mellitus. 2022;25(5):404-417. (In Russ.) https://doi.org/10.14341/DM12954
12. Vergès B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia. 2015;58(5):886-899. https://doi.org/10.1007/s00125-015-3525-8
13. Shojima N, Yamauchi T. Progress in genetics of type 2 diabetes and diabetic complications. J Diabetes Investig. 2023;14(4):503-515. https://doi.org/10.1111/jdi.13970
14. Bonilha I, Hajduch E, Luchiari B, Nadruz W, Le Goff W, Sposito AC. The Reciprocal Relationship between LDL Metabolism and Type 2 Diabetes Mellitus. Metabolites. 2021;11(12):807. https://doi.org/10.3390/metabo11120807
15. Ormazabal V, Nair S, Elfeky O, et al. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):122. https://doi.org/10.1186/s12933-018-0762-4
16. Jin JL, Zhang HW, Cao YX, et al. Association of small dense low-density lipoprotein with cardiovascular outcome in patients with coronary artery disease and diabetes: a prospective, observational cohort study. Cardiovasc Diabetol. 2020;19(1):45. https://doi.org/10.1186/s12933-020-01015-6
17. Gerber PA, Thalhammer C, Schmied C, et al. Small, dense LDL particles predict changes in intima media thickness and insulin resistance in men with type 2 diabetes and prediabetes--a prospective cohort study. PLoS One. 2013;8(8):e72763. https://doi.org/10.1371/journal.pone.0072763
18. Dannecker C, Wagner R, Peter A, et al. Low-Density Lipoprotein Cholesterol Is Associated With Insulin Secretion. J Clin Endocrinol Metab. 2021;106(6):1576-1584. https://doi.org/10.1210/clinem/dgab147
19. Frangie C, Daher J. Role of myeloperoxidase in inflammation and atherosclerosis (Review). Biomed Rep. 2022;16(6):53. https://doi.org/10.3892/br.2022.1536
20. Takahashi Y, Zhu H, Yoshimoto T. Essential roles of lipoxygenases in LDL oxidation and development of atherosclerosis. Antioxid Redox Signal. 2005;7(3-4):425-431. https://doi.org/10.1089/ars.2005.7.425
21. Khatana C, Saini NK, Chakrabarti S, et al. Mechanistic Insights into the Oxidized Low-Density Lipoprotein-Induced Atherosclerosis. Oxid Med Cell Longev. 2020;2020:5245308. https://doi.org/10.1155/2020/5245308
22. Poznyak AV, Grechko AV, Orekhova VA, et al. NADPH Oxidases and Their Role in Atherosclerosis. Biomedicines. 2020;8(7):206. https://doi.org/10.3390/biomedicines8070206
23. Poznyak AV, Nikiforov NG, Markin AM, et al. Overview of OxLDL and Its Impact on Cardiovascular Health: Focus on Atherosclerosis. Front Pharmacol. 2021;11:613780. https://doi.org/10.3389/fphar.2020.61378
24. Iuliano L. Pathways of cholesterol oxidation via non-enzymatic mechanisms. Chem Phys Lipids. 2011;164(6):457-468. https://doi.org/10.1016/j.chemphyslip.2011.06.006
25. Toma L, Stancu CS, Sima AV. Endothelial Dysfunction in Diabetes Is Aggravated by Glycated Lipoproteins; Novel Molecular Therapies. Biomedicines. 2020;9(1):18. https://doi.org/10.3390/biomedicines9010018
26. Lin J. Low-Density Lipoprotein: Biochemical and Metabolic Characteristics and Its Pathogenic Mechanism. IntechOpen. 2020. https://doi.org/10.5772/intechopen.86872
27. Volobueva A, Zhang D, Grechko AV, Orekhov AN. Foam cell formation and cholesterol trafficking and metabolism disturbances in atherosclerosis. Cor et Vasa. 2019;61(1):48-55. https://doi.org/10.1016/j.crvasa.2018.06.006
28. Aoki Y, Dai H, Furuta F, et al. LOX-1 mediates inflammatory activation of microglial cells through the p38-MAPK/NF-κB pathways under hypoxic-ischemic conditions. Cell Commun Signal. 2023;21(1):126. https://doi.org/10.1186/s12964-023-01048-w
29. Munno M, Mallia A, Greco A, et al. Radical Oxygen Species, Oxidized Low-Density Lipoproteins, and Lectin-like Oxidized Low-Density Lipoprotein Receptor 1: A Vicious Circle in Atherosclerotic Process. Antioxidants (Basel). 2024;13(5):583. https://doi.org/10.3390/antiox13050583
30. Kim EJ, Ramachandran R, Wierzbicki AS. Lipidomics in diabetes. Curr Opin Endocrinol Diabetes Obes. 2022;29(2):124-130. https://doi.org/10.1097/MED.0000000000000704
31. Bandet CL, Tan-Chen S, Bourron O, et al. Sphingolipid Metabolism: New Insight into Ceramide-Induced Lipotoxicity in Muscle Cells. Int J Mol Sci. 2019;20(3):479. https://doi.org/10.3390/ijms20030479
32. Neeland IJ, Singh S, McGuire DK, et al. Relation of plasma ceramides to visceral adiposity, insulin resistance and the development of type 2 diabetes mellitus: the Dallas Heart Study. Diabetologia. 2018;61(12):2570-2579. https://doi.org/10.1007/s00125-018-4720-1
33. Gaggini M, Pingitore A, Vassalle C. Plasma Ceramides Pathophysiology, Measurements, Challenges, and Opportunities. Metabolites. 2021;11(11):719. https://doi.org/10.3390/metabo11110719
34. J Hoy AJ, Stark R, et al. Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance. Diabetes. 2013;62(2):401-410. https://doi.org/10.2337/db12-0686
35. Lubrano V, Balzan S, Papa A. LOX-1 variants modulate the severity of cardiovascular disease: state of the art and future directions. Mol Cell Biochem. 2023. https://doi.org/10.1007/s11010-023-04859-0
36. El-Hajjar L, Hindieh J, Andraos R, et al. Myeloperoxidase-Oxidized LDL Activates Human Aortic Endothelial Cells through the LOX-1 Scavenger Receptor. Int J Mol Sci. 2022;23(5):2837. https://doi.org/10.3390/ijms23052837
37. Mango R, Biocca S, del Vecchio F, et al. In vivo and in vitro studies support that a new splicing isoform of OLR1 gene is protective against acute myocardial infarction. Circ Res. 2005;97(2):152-8. https://doi.org/0.1161/01.RES.0000174563.62625
38. Barreto J, Karathanasis SK, Remaley A, Sposito AC. Role of LOX-1 (Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1) as a Cardiovascular Risk Predictor: Mechanistic Insight and Potential Clinical Use. Arterioscler Thromb Vasc Biol. 2021;41(1):153-166. https://doi.org/10.1161/ATVBAHA.120.315421
39. Thakkar S, Wang X, Khaidakov M, et al. Structure-based Design Targeted at LOX-1, a Receptor for Oxidized Low-Density Lipoprotein. Sci Rep. 2015;5:16740. https://doi.org/10.1038/srep16740
40. Kattoor AJ, Goel A, Mehta JL. LOX-1: Regulation, Signaling and Its Role in Atherosclerosis. Antioxidants (Basel). 2019;8(7):218. https://doi.org/10.3390/antiox8070218
41. Akhmedov A, Sawamura T, Chen CH, et al. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1): a crucial driver of atherosclerotic cardiovascular disease. Eur Heart J. 2021;42(18):1797-1807. https://doi.org/10.1093/eurheartj/ehaa770
42. Stein S, Matter CM. Protective roles of SIRT1 in atherosclerosis. Cell Cycle. 2011;10(4):640-647. https://doi.org/10.4161/cc.10.4.14863
43. Shao D, Di Y, Lian Z, et al. Grape seed proanthocyanidins suppressed macrophage foam cell formation by miRNA-9 via targeting ACAT1 in THP-1 cells. Food Funct. 2020;11(2):1258-1269. https://doi.org/10.1039/c9fo02352f
44. Dai Y, Zhang Z, Cao Y, et al. MiR-590-5p Inhibits Oxidized- LDL Induced Angiogenesis by Targeting LOX-1. Sci Rep. 2016;6:22607. https://doi.org/10.1038/srep22607.41
45. Hermonat PL, Zhu H, Cao M, Mehta JL. LOX-1 transcription. Cardiovasc Drugs Ther. 2011;25(5):393-400. https://doi.org/10.1007/s10557-011-6322-8
46. Luo P, Zhang WF, Qian ZX, et al. MiR-590-5p-meidated LOX-1 upregulation promotes Angiotensin II-induced endothelial cell apoptosis. Biochem Biophys Res Commun. 2016;471(4):402-408. https://doi.org/10.1016/j.bbrc.2016.02.074
47. He PP, OuYang XP, Li Y, et al. MicroRNA-590 inhibits lipoprotein lipase expression and prevents atherosclerosis in apoE knockout mice. PLoS ONE. 2015;10,e0138788. https://doi.org/10.1371/journal.pone.0138788
48. Wróblewski A, Strycharz J, Oszajca K, et al. Dysregulation of Inflammation, Oxidative Stress, and Glucose Metabolism-Related Genes and miRNAs in Visceral Adipose Tissue of Women with Type 2 Diabetes Mellitus. Med Sci Monit. 2023;29:e939299. https://doi.org/10.12659/MSM.939299
49. Tsai CH, Huang PJ, Lee IT, et al. Endothelin-1-mediated miR-let-7g-5p triggers interlukin-6 and TNF-α to cause myopathy and chronic adipose inflammation in elderly patients with diabetes mellitus. Aging (Albany NY). 2022;14(8):3633-3651. https://doi.org/10.18632/aging.204034
50. Jankauskas SS, Gambardella J, Sardu C, et al. Functional Role of miR-155 in the Pathogenesis of Diabetes Mellitus and Its Complications. Noncoding RNA. 2021;7(3):39. https://doi.org/10.3390/ncrna7030039
51. Papadopoulos KI, Papadopoulou A, Aw TC. MicroRNA-155 mediates endogenous angiotensin II type 1 receptor regulation: implications for innovative type 2 diabetes mellitus management. World J Diabetes. 2023;14(9):1334-1340. https://doi.org/10.4239/wjd.v14.i9.1334
52. Chen Y, Sun C, Lu J, et al. MicroRNA-590-5p antagonizes the inhibitory effect of high glucose on osteoblast differentiation by suppressing Smad7 in MC3T3-E1 cells. J Int Med Res. 2019;47(4):1740-1748. https://doi.org/10.1177/0300060519830212
53. Favre D, Niederhauser G, Fahmi D, et al. Role for inducible cAMP early repressor in promoting pancreatic beta cell dysfun ction evoked by oxidative stress in human and rat islets. Diabetologia. 2011;54(9):2337-2346. https://doi.org/10.1007/s00125-011-2165-x
54. Foroumandi E, Kheirouri S, Nosrati R, Ghodsi R. Association of dietary intake, medication and anthropometric indices with serum levels of advanced glycation end products, caspase-3, and matrix metalloproteinase-9 in diabetic patients. J Diabetes Metab Disord. 2021;20(1):719-725. https://doi.org/10.1007/s40200-021-00803-5
55. Janjusevic M, Fluca AL, Gagno G, et al. Old and Novel Therapeutic Approaches in the Management of Hyperglycemia, an Important Risk Factor for Atherosclerosis. Int J Mol Sci. 2022;23(4):2336. https://doi.org/10.3390/ijms23042336
56. Shaw DJ, Seese R, Ponnambalam S, Ajjan R. The role of lectin-like oxidised low-density lipoprotein receptor-1 in vascular pathology. Diab Vasc Dis Res. 2014;11(6):410-8. https://doi.org/10.1177/1479164114547704
57. Xu S, Ogura S, Chen J, et al. LOX-1 in atherosclerosis: biological functions and pharmacological modifiers. Cell Mol Life Sci. 2013;70(16):2859-2872. https://doi.org/10.1007/s00018-012-1194-z
58. Balzan S, Lubrano V. LOX-1 receptor: A potential link in atherosclerosis and cancer. Life Sci. 2018;198:79-86. https://doi.org/10.1016/j.lfs.2018.02.024
59. Bonilha I, Hajduch E, Luchiari B, et al. The Reciprocal Relationship between LDL Metabolism and Type 2 Diabetes Mellitus. Metabolites. 2021;11(12):807. https://doi.org/10.3390/metabo11120807
60. Fu D, Yu JY, Wu M, et al. Immune complex formation in human diabetic retina enhances toxicity of oxidized LDL towards retinal capillary pericytes. J Lipid Res. 2014;55(5):860-869. https://doi.org/10.1194/jlr.M045401
61. Abdelsamie SA, Li Y, Huang Y, et al. Oxidized LDL immune complexes stimulate collagen IV production in mesangial cells via Fc gamma receptors I and III. Clin Immunol. 2011;139(3):258-66. https://doi.org/10.1016/j.clim.2011.01.016
62. Truthe S, Klassert TE, Schmelz S, et al. Role of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Inflammation and Pathogen-Associated Interactions. J Innate Immun. 2024;16(1):105-132. https://doi.org/10.1159/000535793
63. Yamamoto N, Toyoda M, Abe M, et al. Lectin-like oxidized LDL receptor-1 (LOX-1) expression in the tubulointerstitial area likely plays an important role in human diabetic nephropathy. Intern Med. 2009;48(4):189-194. https://doi.org/10.2169/internalmedicine.48.1251
64. Jamatia E, Lali P, Koner BC, et al. OLR1 Gene Polymorphism and Oxidized LDL Levels in Metabolic Syndrome in Indian Population. Indian J Endocrinol Metab. 2018;22(4):530-534. https://doi.org/10.4103/ijem.IJEM_112_18
65. Aydemir B, Baykara O, Cinemre FB, et al. LOX-1 gene variants and maternal levels of plasma oxidized LDL and malondialdehyde in patients with gestational diabetes mellitus. Arch Gynecol Obstet. 2016;293(3):517-27. https://doi.org/10.1007/s00404-015-3851-6
66. Berstein LM, Iyevleva AG, Vasilyev D, et al. Genetic polymorphisms potentially associated with response to metformin in postmenopausal diabetics suffering and not suffering with cancer. Cell Cycle. 2013;12(23):3681-8. https://doi.org/10.4161/cc.26868
Supplementary files
|
1. Figure 1. Diagram of ox-LDL interaction with LOX-1. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(529KB)
|
Indexing metadata ▾ |
Review
For citations:
Fetlam D.L., Chumachenko A.G., Pisarev V.M. The Significance of Oxidized Low-Density Lipoproteins and Receptors LOX-1 in Type 2 Diabetes Mellitus. Diabetes mellitus. 2024;27(6):589-597. (In Russ.) https://doi.org/10.14341/DM13203

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).