Preview

Diabetes mellitus

Advanced search

Extended-release metformin in patients with prediabetes, chro­nic heart failure and abdominal obesity in light of the effect on fat depot compartments and glucose metabolism parameters

https://doi.org/10.14341/DM13189

Abstract

BACKGROUND: Considering the role of visceral adipose tissue deposition in the pathogenesis of heart failure with preserved ejection fraction (HFpEF) and the positive effect of metformin on weight loss, the effect of this drug on adipose tissue compartments in patients with HFpEF is interest.

AIM: To study the effect of extended-release metformin (XR) on various fat depots and parameters of insulin-glucose homeostasis in patients with HFpEF, prediabetes and abdominal obesity (AO).

MATERIALS AND METHODS: Study design: single-center, open-ended, randomized, prospective, controlled. The registration numbers of the study in the NARNIS register RNI.25.004. The study included 64 people (50% men, median age 58 [55.25; 59.75] years) with HFpEF, prediabetes and AO. All patients (groups A and B) received optimal HFpEF therapy. In group A (n=32), metformin XR 1000–1500 mg/day was additionally prescribed. All patients underwent general clinical examination, calculation of insulin resistance indices, ultrasound lipometry to determine the thickness of epicardial, preperitoneal and subcutaneous fat initially and after 6 months.

RESULTS: In group A patients, there was a decrease in waist circumference by 0.9% (p=0.002), hip circumference by 1.25% (p=0.001), body weight by 4.7% (p<0.0001), body mass index by 1.8% (p=0.001) compared with baseline. In the control group, the anthropometric parameters of the dynamics did not change. Also, in the metformin XR group, glucose levels decreased by 4.6% (p=0.009), glycated hemoglobin by 3.3% (p=0.047), insulin by 12.5% (p=0.024) and insulin resistance indices: HOMA-IR by 19.8% (p=0.009), FIRI by 19.8% (p=0.009). In contrast, patients from group B had an increase in fasting plasma insulin levels by 33.6% (p=0.035), with an increase in HOMA-IR indices by 27.4% (p=0.026) and FIRI by 26.9% (p=0.025). The dynamics of ultrasound lipometry parameters was observed only in group A: the thickness of the preperitoneal fat decreased by 14.5% (p<0.0001), the thickness of the subcutaneous fat decreased by 12.3% (p<0.0001).

CONCLUSION: In patients with prediabetes, HFpEF and AO, taking metformin XR 1000-1500 mg/day for 6 months against the background of optimal basic HFpEF therapy was associated with a decrease in subcutaneous and preperitoneal fat, also had a beneficial effect on glucose metabolism parameters compared with the control group.

About the Authors

O. V. Tsygankova
Novosibirsk State Medical University; Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Oksana V. Tsygankova - MD, PhD, Professor; Researcher ID: AAZ-2192-2020; Scopus Author ID: 16835397600.

Novosibirsk


Competing Interests:

none



N. E. Apartseva
Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Natalia E. Apartseva - PhD student. Researcher ID: AAQ-2766-2021; Scopus Author ID: 57219415522.

175/1 B. Bogatkova street, 630089 Novosibirsk


Competing Interests:

none



L. D. Latyntseva
Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Lyudmila D. Latyntseva - PhD.

Novosibirsk


Competing Interests:

none



A. N. Ryabikov
Novosibirsk State Medical University; Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Andrew N. Ryabikov - MD, PhD, Professor; Scopus Author ID: 6602252604

Novosibirsk


Competing Interests:

none



References

1. Lopaschuk GD, Karwi QG, Tian R, et al. Cardiac Energy Metabolism in Heart Failure. Circ Res. 2021;128(10):1487-1513. doi: https://doi.org/10.1161/CIRCRESAHA.121.318241

2. Pfeffer MA, Shah AM, Borlaug BA. Heart Failure With Preserved Ejection Fraction In Perspective. Circ Res. 2019;124(11):1598-1617. doi: https://doi.org/10.1161/CIRCRESAHA.119.313572

3. Hill MA, Yang Y, Zhang L, et al. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism. 2021;119:154766. doi: https://doi.org/10.1016/j.metabol.2021.154766

4. Tsygankova OV, Nikolaev KYu, Fedorova EL, et al. Risk factors of cardiovascular diseases. Look at the woman. Ateroscleroz. 2014;10(1):44-55. (In Russ.).

5. Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nat Rev Cardiol. 2022;19(9):593-606. doi: https://doi.org/10.1038/s41569-022-00679-9

6. van Woerden G, van Veldhuisen DJ, Westenbrink BD, et al. Connecting epicardial adipose tissue and heart failure with preserved ejection fraction: mechanisms, management and modern perspectives. Eur J Heart Fail. 2022;24(12):2238-2250. doi: https://doi.org/10.1002/ejhf.2741

7. Liu KH, Kong APS, Chan JCN, Wing WC. Sonographic Measurement of Mesenteric Fat Thickness Is a Better Predictor of Aortic Stiffness Compared With Conventional Obesity Indexes. Ultrasound Med Biol. 2023;49(2):599-606. doi: https://doi.org/10.1016/j.ultrasmedbio.2022.10.016

8. Zhang QH, Xie LH, Zhang HN, et al. Magnetic Resonance Imaging Assessment of Abdominal Ectopic Fat Deposition in Correlation With Cardiometabolic Risk Factors. Front Endocrinol (Lausanne). 2022;13:820023. doi: https://doi.org/10.3389/fendo.2022.820023

9. Ather S, Chan W, Bozkurt B, et al. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol. 2012;59(11):998-1005. doi: https://doi.org/10.1016/j.jacc.2011.11.040

10. Tsygankova OV, Evdokimova NE, Veretyuk VV, et al. Insulin resistance and heart failure with preserved ejection fraction. Pathogenetic and therapeutic crossroads. Diabetes Mellitus. 2022;25(6):535-547. (In Russ.). doi: https://doi.org/10.14341/DM12916

11. Российская ассоциация эндокринологов. Сахарный диабет 2 типа у взрослых. Клинические рекомендации 2022 г. https://cr.minzdrav.gov.ru/schema/290_2

12. Russian Society of Cardiology (RSC). 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11):4083 (In Russ). doi: https://doi.org/10.15829/1560-4071-2020-4083

13. Tsygankova OV, Evdokimova NE, Latyntseva LD. Chronic heart failure with preserved ejection fraction amid prediabetes and abdominal obesity: fat depot compartments and cardiometabolic risk markers. Russian Medical Inquiry. 2023;7(1):22–29. (in Russ.). doi: https://doi.org/10.32364/2587-6821-2023-7-1-22-29

14. Chumakova GA, Veselovskaya NG. Methods of visceral obesity assessment in clinical practice. Russian Journal of Cardiology. 2016;4:89-96. (In Russ). doi: https://doi.org/10.15829/1560-4071-2016-4-89-96

15. Guliev ZZ, Ryabikov AN, Malyutina SK, Strygin AV. Ultrasonic assessment of lipometric indicators: validization by means of MC-CT. Medicine and Education in Siberia. 2014;3:55 (In Russ).

16. Ryabikov AN, Malyutina SK, Guliev ZZ, Shakhmatov SG, et al. Method for diagnosing metabolic syndrome using ultrasound lipometry. Patent RUS №2677526 С1, 17.01.2019. (In Russ). Доступно по: https://www1.fips.ru/publication-web/publications/document?type=doc&tab=IZPM&id=4072D320-2902-4627-A226-38AFB19FEFB6. Ссылка активна на 10.05.2024.

17. Mohan M, Al-Talabany S, McKinnie A, et al. A randomized controlled trial of metformin on left ventricular hypertrophy in patients with coronary artery disease without diabetes: the MET-REMODEL trial. Eur Heart J. 2019;40(41):3409-3417. doi: https://doi.org/10.1093/eurheartj/ehz203

18. Bajaj NS, Vaduganathan M. Using antimatter to uncover what matters: metformin effects on myocardial efficiency in heart failure. Eur J Heart Fail. 2020;22(9):1638-1640. doi: https://doi.org/10.1002/ejhf.1856

19. Salvatore T, Pafundi PC, Galiero R, et al. Can metformin exert as an active drug on endothelial dysfunction in diabetic subjects? Biomedicines. 2020;9:3. doi: https://doi.org/10.3390/biomedicines9010003

20. Salvatore T, Galiero R, Caturano A, et al. Effects of Metformin in Heart Failure: From Pathophysiological Rationale to Clinical Evidence. Biomolecules. 2021;11(12):1834. doi: https://doi.org/10.3390/biom11121834

21. Kristensen SL, Preiss D, Jhund PS, et al. Risk related to prediabetes mellitus and diabetes mellitus in heart failure with reduced ejection fraction. Circ Heart Fail. 2016;9:e002560. doi: https://doi.org/10.1161/CIRCHEARTFAILURE.115.002560

22. Apolzan JW, Venditti EM, Edelstein SL, et al. Long-term weight loss with metformin or lifestyle intervention in the diabetes prevention program outcomes study. Ann Intern Med. 2019;170:682–690. doi: https://doi.org/10.7326/M18-1605

23. Preiss D, Lloyd SM, Ford I, et al. Metformin for non-diabetic patients with coronary heart disease (the CAMERA study): a randomised controlled trial. Lancet Diabetes Endocrinol. 2014;2(2):116-24. doi: https://doi.org/10.1016/S2213-8587(13)70152-9

24. Yerevanian A, Soukas AA. Metformin: Mechanisms in Human Obesity and Weight Loss. Curr Obes Rep. 2019;8(2):156-164. doi: https://doi.org/10.1007/s13679-019-00335-3

25. Hansen CS, Lundby-Christiansen L, Tarnow L, et al; CIMT study group. Metformin may adversely affect orthostatic blood pressure recovery in patients with type 2 diabetes: substudy from the placebo-controlled Copenhagen Insulin and Metformin Therapy (CIMT) trial. Cardiovasc Diabetol. 2020;19(1):150. doi: https://doi.org/10.1186/s12933-020-01131-3

26. Tomczyk R, Ociepka A, Kiałka M, et al. Metformina, a zmiany ciśnienia tetniczego krwi i czestości akcji serca u szczupłych pacjentek z zespołem policystycznych jajników (PCOS) —doniesienie wstepne [Metformin and changes in blood pressure and heart rate in lean patients with polycystic ovary syndrome (PCOS) — preliminary study]. Przegl Lek. 2015;72(6):302-5

27. Wu T, Trahair LG, Little TJ, et al. Effects of Vildagliptin and Metformin on Blood Pressure and Heart Rate Responses to Small Intestinal Glucose in Type 2 Diabetes. Diabetes Care. 2017;40(5):702-705. doi: https://doi.org/10.2337/dc16-2391

28. Kang SJ, Ha GC, Ko KJ. Association between resting heart rate, metabolic syndrome and cardiorespiratory fitness in Korean male adults. J Exerc Sci Fit. 2017;15(1):27-31. doi: https://doi.org/10.1016/j.jesf.2017.06.001

29. Goorakani Y, Sedigh Rahimabadi M, Dehghan A, et al. Correlation of resting heart rate with anthropometric factors and serum biomarkers in a population-based study: Fasa PERSIAN cohort study. BMC Cardiovasc Disord. 2020;20(1):319. doi: https://doi.org/10.1186/s12872-020-01594-y

30. Færch K, Blond MB, Bruhn L, et al. The effects of dapagliflozin, metformin or exercise on glycaemic variability in overweight or obese individuals with prediabetes (the PRE-D Trial): a multi-arm, randomised, controlled trial. Diabetologia. 2021;64(1):42-55. doi: https://doi.org/10.1007/s00125-020-05306-1

31. Castagno D, Baird-Gunning J, Jhund PS, et al. Intensive glycemic control has no impact on the risk of heart failure in type 2 diabetic patients: evidence from a 37,229 patient meta-analysis. Am Heart J. 2011;162(5):938-948.e2. doi: https://doi.org/10.1016/j.ahj.2011.07.030

32. Ziqubu K, Mazibuko-Mbeje SE, Mthembu SXH, et al. Anti-Obesity Effects of Metformin: A Scoping Review Evaluating the Feasibility of Brown Adipose Tissue as a Therapeutic Target. Int J Mol Sci. 2023;24(3):2227. doi: https://doi.org/10.3390/ijms24032227

33. Zsóri G, Illés D, Ivány E, et al. In New-Onset Diabetes Mellitus, Metformin Reduces Fat Accumulation in the Liver, But Not in the Pancreas or Pericardium. Metab Syndr Relat Disord. 2019;17(5):289-295. doi: https://doi.org/10.1089/met.2018.0086

34. Yasmin T, Rahman MM, Khan F, et al. Metformin treatment reverses high fat diet- induced non-alcoholic fatty liver diseases and dyslipidemia by stimulating multiple antioxidant and anti-inflammatory pathways. Biochem Biophys Rep. 2021;28:101168. doi: https://doi.org/10.1016/j.bbrep.2021.101168

35. Tokubuchi I, Tajiri Y, Iwata S, et al. Beneficial effects of metformin on energy metabolism and visceral fat volume through a possible mechanism of fatty acid oxidation in human subjects and rats. PLoS One. 2017;12(2):e0171293. doi: https://doi.org/10.1371/journal.pone.0171293

36. Neeland IJ, Ross R, Després JP, et al.; International Atherosclerosis Society; International Chair on Cardiometabolic Risk Working Group on Visceral Obesity. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol. 2019;7(9):715-725. doi: https://doi.org/10.1016/S2213-8587(19)30084-1

37. Shi YJ, Dong GJ, Guo M. Targeting epicardial adipose tissue: A potential therapeutic strategy for heart failure with preserved ejection fraction with type 2 diabetes mellitus. World J Diabetes. 2023;14(6):724-740. doi: https://doi.org/10.4239/wjd.v14.i6.724

38. Ziyrek M, Kahraman S, Ozdemir E, Dogan A. Metformin monotherapy significantly decreases epicardial adipose tissue thickness in newly diagnosed type 2 diabetes patients. Rev Port Cardiol (Engl Ed). 2019;38(6):419-423. doi: https://doi.org/10.1016/j.repc.2018.08.010


Supplementary files

1. Figure 1. Study design scheme.
Subject
Type Исследовательские инструменты
View (136KB)    
Indexing metadata ▾
2. Figure 2. Structure of therapy received by randomized patients.
Subject
Type Исследовательские инструменты
View (149KB)    
Indexing metadata ▾
3. Figure 3. Comparison of intergroup differences (groups A and B) in changes in subcutaneous and preperitoneal fat thickness between visits 1 and 2.
Subject
Type Исследовательские инструменты
View (157KB)    
Indexing metadata ▾

Review

For citations:


Tsygankova O.V., Apartseva N.E., Latyntseva L.D., Ryabikov A.N. Extended-release metformin in patients with prediabetes, chro­nic heart failure and abdominal obesity in light of the effect on fat depot compartments and glucose metabolism parameters. Diabetes mellitus. 2024;27(4):357-367. (In Russ.) https://doi.org/10.14341/DM13189

Views: 913


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)