Extended-release metformin in patients with prediabetes, chronic heart failure and abdominal obesity in light of the effect on fat depot compartments and glucose metabolism parameters
https://doi.org/10.14341/DM13189
Abstract
BACKGROUND: Considering the role of visceral adipose tissue deposition in the pathogenesis of heart failure with preserved ejection fraction (HFpEF) and the positive effect of metformin on weight loss, the effect of this drug on adipose tissue compartments in patients with HFpEF is interest.
AIM: To study the effect of extended-release metformin (XR) on various fat depots and parameters of insulin-glucose homeostasis in patients with HFpEF, prediabetes and abdominal obesity (AO).
MATERIALS AND METHODS: Study design: single-center, open-ended, randomized, prospective, controlled. The registration numbers of the study in the NARNIS register RNI.25.004. The study included 64 people (50% men, median age 58 [55.25; 59.75] years) with HFpEF, prediabetes and AO. All patients (groups A and B) received optimal HFpEF therapy. In group A (n=32), metformin XR 1000–1500 mg/day was additionally prescribed. All patients underwent general clinical examination, calculation of insulin resistance indices, ultrasound lipometry to determine the thickness of epicardial, preperitoneal and subcutaneous fat initially and after 6 months.
RESULTS: In group A patients, there was a decrease in waist circumference by 0.9% (p=0.002), hip circumference by 1.25% (p=0.001), body weight by 4.7% (p<0.0001), body mass index by 1.8% (p=0.001) compared with baseline. In the control group, the anthropometric parameters of the dynamics did not change. Also, in the metformin XR group, glucose levels decreased by 4.6% (p=0.009), glycated hemoglobin by 3.3% (p=0.047), insulin by 12.5% (p=0.024) and insulin resistance indices: HOMA-IR by 19.8% (p=0.009), FIRI by 19.8% (p=0.009). In contrast, patients from group B had an increase in fasting plasma insulin levels by 33.6% (p=0.035), with an increase in HOMA-IR indices by 27.4% (p=0.026) and FIRI by 26.9% (p=0.025). The dynamics of ultrasound lipometry parameters was observed only in group A: the thickness of the preperitoneal fat decreased by 14.5% (p<0.0001), the thickness of the subcutaneous fat decreased by 12.3% (p<0.0001).
CONCLUSION: In patients with prediabetes, HFpEF and AO, taking metformin XR 1000-1500 mg/day for 6 months against the background of optimal basic HFpEF therapy was associated with a decrease in subcutaneous and preperitoneal fat, also had a beneficial effect on glucose metabolism parameters compared with the control group.
About the Authors
O. V. TsygankovaRussian Federation
Oksana V. Tsygankova - MD, PhD, Professor; Researcher ID: AAZ-2192-2020; Scopus Author ID: 16835397600.
Novosibirsk
Competing Interests:
none
N. E. Apartseva
Russian Federation
Natalia E. Apartseva - PhD student. Researcher ID: AAQ-2766-2021; Scopus Author ID: 57219415522.
175/1 B. Bogatkova street, 630089 Novosibirsk
Competing Interests:
none
L. D. Latyntseva
Russian Federation
Lyudmila D. Latyntseva - PhD.
Novosibirsk
Competing Interests:
none
A. N. Ryabikov
Russian Federation
Andrew N. Ryabikov - MD, PhD, Professor; Scopus Author ID: 6602252604
Novosibirsk
Competing Interests:
none
References
1. Lopaschuk GD, Karwi QG, Tian R, et al. Cardiac Energy Metabolism in Heart Failure. Circ Res. 2021;128(10):1487-1513. doi: https://doi.org/10.1161/CIRCRESAHA.121.318241
2. Pfeffer MA, Shah AM, Borlaug BA. Heart Failure With Preserved Ejection Fraction In Perspective. Circ Res. 2019;124(11):1598-1617. doi: https://doi.org/10.1161/CIRCRESAHA.119.313572
3. Hill MA, Yang Y, Zhang L, et al. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism. 2021;119:154766. doi: https://doi.org/10.1016/j.metabol.2021.154766
4. Tsygankova OV, Nikolaev KYu, Fedorova EL, et al. Risk factors of cardiovascular diseases. Look at the woman. Ateroscleroz. 2014;10(1):44-55. (In Russ.).
5. Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nat Rev Cardiol. 2022;19(9):593-606. doi: https://doi.org/10.1038/s41569-022-00679-9
6. van Woerden G, van Veldhuisen DJ, Westenbrink BD, et al. Connecting epicardial adipose tissue and heart failure with preserved ejection fraction: mechanisms, management and modern perspectives. Eur J Heart Fail. 2022;24(12):2238-2250. doi: https://doi.org/10.1002/ejhf.2741
7. Liu KH, Kong APS, Chan JCN, Wing WC. Sonographic Measurement of Mesenteric Fat Thickness Is a Better Predictor of Aortic Stiffness Compared With Conventional Obesity Indexes. Ultrasound Med Biol. 2023;49(2):599-606. doi: https://doi.org/10.1016/j.ultrasmedbio.2022.10.016
8. Zhang QH, Xie LH, Zhang HN, et al. Magnetic Resonance Imaging Assessment of Abdominal Ectopic Fat Deposition in Correlation With Cardiometabolic Risk Factors. Front Endocrinol (Lausanne). 2022;13:820023. doi: https://doi.org/10.3389/fendo.2022.820023
9. Ather S, Chan W, Bozkurt B, et al. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol. 2012;59(11):998-1005. doi: https://doi.org/10.1016/j.jacc.2011.11.040
10. Tsygankova OV, Evdokimova NE, Veretyuk VV, et al. Insulin resistance and heart failure with preserved ejection fraction. Pathogenetic and therapeutic crossroads. Diabetes Mellitus. 2022;25(6):535-547. (In Russ.). doi: https://doi.org/10.14341/DM12916
11. Российская ассоциация эндокринологов. Сахарный диабет 2 типа у взрослых. Клинические рекомендации 2022 г. https://cr.minzdrav.gov.ru/schema/290_2
12. Russian Society of Cardiology (RSC). 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11):4083 (In Russ). doi: https://doi.org/10.15829/1560-4071-2020-4083
13. Tsygankova OV, Evdokimova NE, Latyntseva LD. Chronic heart failure with preserved ejection fraction amid prediabetes and abdominal obesity: fat depot compartments and cardiometabolic risk markers. Russian Medical Inquiry. 2023;7(1):22–29. (in Russ.). doi: https://doi.org/10.32364/2587-6821-2023-7-1-22-29
14. Chumakova GA, Veselovskaya NG. Methods of visceral obesity assessment in clinical practice. Russian Journal of Cardiology. 2016;4:89-96. (In Russ). doi: https://doi.org/10.15829/1560-4071-2016-4-89-96
15. Guliev ZZ, Ryabikov AN, Malyutina SK, Strygin AV. Ultrasonic assessment of lipometric indicators: validization by means of MC-CT. Medicine and Education in Siberia. 2014;3:55 (In Russ).
16. Ryabikov AN, Malyutina SK, Guliev ZZ, Shakhmatov SG, et al. Method for diagnosing metabolic syndrome using ultrasound lipometry. Patent RUS №2677526 С1, 17.01.2019. (In Russ). Доступно по: https://www1.fips.ru/publication-web/publications/document?type=doc&tab=IZPM&id=4072D320-2902-4627-A226-38AFB19FEFB6. Ссылка активна на 10.05.2024.
17. Mohan M, Al-Talabany S, McKinnie A, et al. A randomized controlled trial of metformin on left ventricular hypertrophy in patients with coronary artery disease without diabetes: the MET-REMODEL trial. Eur Heart J. 2019;40(41):3409-3417. doi: https://doi.org/10.1093/eurheartj/ehz203
18. Bajaj NS, Vaduganathan M. Using antimatter to uncover what matters: metformin effects on myocardial efficiency in heart failure. Eur J Heart Fail. 2020;22(9):1638-1640. doi: https://doi.org/10.1002/ejhf.1856
19. Salvatore T, Pafundi PC, Galiero R, et al. Can metformin exert as an active drug on endothelial dysfunction in diabetic subjects? Biomedicines. 2020;9:3. doi: https://doi.org/10.3390/biomedicines9010003
20. Salvatore T, Galiero R, Caturano A, et al. Effects of Metformin in Heart Failure: From Pathophysiological Rationale to Clinical Evidence. Biomolecules. 2021;11(12):1834. doi: https://doi.org/10.3390/biom11121834
21. Kristensen SL, Preiss D, Jhund PS, et al. Risk related to prediabetes mellitus and diabetes mellitus in heart failure with reduced ejection fraction. Circ Heart Fail. 2016;9:e002560. doi: https://doi.org/10.1161/CIRCHEARTFAILURE.115.002560
22. Apolzan JW, Venditti EM, Edelstein SL, et al. Long-term weight loss with metformin or lifestyle intervention in the diabetes prevention program outcomes study. Ann Intern Med. 2019;170:682–690. doi: https://doi.org/10.7326/M18-1605
23. Preiss D, Lloyd SM, Ford I, et al. Metformin for non-diabetic patients with coronary heart disease (the CAMERA study): a randomised controlled trial. Lancet Diabetes Endocrinol. 2014;2(2):116-24. doi: https://doi.org/10.1016/S2213-8587(13)70152-9
24. Yerevanian A, Soukas AA. Metformin: Mechanisms in Human Obesity and Weight Loss. Curr Obes Rep. 2019;8(2):156-164. doi: https://doi.org/10.1007/s13679-019-00335-3
25. Hansen CS, Lundby-Christiansen L, Tarnow L, et al; CIMT study group. Metformin may adversely affect orthostatic blood pressure recovery in patients with type 2 diabetes: substudy from the placebo-controlled Copenhagen Insulin and Metformin Therapy (CIMT) trial. Cardiovasc Diabetol. 2020;19(1):150. doi: https://doi.org/10.1186/s12933-020-01131-3
26. Tomczyk R, Ociepka A, Kiałka M, et al. Metformina, a zmiany ciśnienia tetniczego krwi i czestości akcji serca u szczupłych pacjentek z zespołem policystycznych jajników (PCOS) —doniesienie wstepne [Metformin and changes in blood pressure and heart rate in lean patients with polycystic ovary syndrome (PCOS) — preliminary study]. Przegl Lek. 2015;72(6):302-5
27. Wu T, Trahair LG, Little TJ, et al. Effects of Vildagliptin and Metformin on Blood Pressure and Heart Rate Responses to Small Intestinal Glucose in Type 2 Diabetes. Diabetes Care. 2017;40(5):702-705. doi: https://doi.org/10.2337/dc16-2391
28. Kang SJ, Ha GC, Ko KJ. Association between resting heart rate, metabolic syndrome and cardiorespiratory fitness in Korean male adults. J Exerc Sci Fit. 2017;15(1):27-31. doi: https://doi.org/10.1016/j.jesf.2017.06.001
29. Goorakani Y, Sedigh Rahimabadi M, Dehghan A, et al. Correlation of resting heart rate with anthropometric factors and serum biomarkers in a population-based study: Fasa PERSIAN cohort study. BMC Cardiovasc Disord. 2020;20(1):319. doi: https://doi.org/10.1186/s12872-020-01594-y
30. Færch K, Blond MB, Bruhn L, et al. The effects of dapagliflozin, metformin or exercise on glycaemic variability in overweight or obese individuals with prediabetes (the PRE-D Trial): a multi-arm, randomised, controlled trial. Diabetologia. 2021;64(1):42-55. doi: https://doi.org/10.1007/s00125-020-05306-1
31. Castagno D, Baird-Gunning J, Jhund PS, et al. Intensive glycemic control has no impact on the risk of heart failure in type 2 diabetic patients: evidence from a 37,229 patient meta-analysis. Am Heart J. 2011;162(5):938-948.e2. doi: https://doi.org/10.1016/j.ahj.2011.07.030
32. Ziqubu K, Mazibuko-Mbeje SE, Mthembu SXH, et al. Anti-Obesity Effects of Metformin: A Scoping Review Evaluating the Feasibility of Brown Adipose Tissue as a Therapeutic Target. Int J Mol Sci. 2023;24(3):2227. doi: https://doi.org/10.3390/ijms24032227
33. Zsóri G, Illés D, Ivány E, et al. In New-Onset Diabetes Mellitus, Metformin Reduces Fat Accumulation in the Liver, But Not in the Pancreas or Pericardium. Metab Syndr Relat Disord. 2019;17(5):289-295. doi: https://doi.org/10.1089/met.2018.0086
34. Yasmin T, Rahman MM, Khan F, et al. Metformin treatment reverses high fat diet- induced non-alcoholic fatty liver diseases and dyslipidemia by stimulating multiple antioxidant and anti-inflammatory pathways. Biochem Biophys Rep. 2021;28:101168. doi: https://doi.org/10.1016/j.bbrep.2021.101168
35. Tokubuchi I, Tajiri Y, Iwata S, et al. Beneficial effects of metformin on energy metabolism and visceral fat volume through a possible mechanism of fatty acid oxidation in human subjects and rats. PLoS One. 2017;12(2):e0171293. doi: https://doi.org/10.1371/journal.pone.0171293
36. Neeland IJ, Ross R, Després JP, et al.; International Atherosclerosis Society; International Chair on Cardiometabolic Risk Working Group on Visceral Obesity. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol. 2019;7(9):715-725. doi: https://doi.org/10.1016/S2213-8587(19)30084-1
37. Shi YJ, Dong GJ, Guo M. Targeting epicardial adipose tissue: A potential therapeutic strategy for heart failure with preserved ejection fraction with type 2 diabetes mellitus. World J Diabetes. 2023;14(6):724-740. doi: https://doi.org/10.4239/wjd.v14.i6.724
38. Ziyrek M, Kahraman S, Ozdemir E, Dogan A. Metformin monotherapy significantly decreases epicardial adipose tissue thickness in newly diagnosed type 2 diabetes patients. Rev Port Cardiol (Engl Ed). 2019;38(6):419-423. doi: https://doi.org/10.1016/j.repc.2018.08.010
Supplementary files
|
1. Figure 1. Study design scheme. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(136KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Structure of therapy received by randomized patients. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(149KB)
|
Indexing metadata ▾ |
|
3. Figure 3. Comparison of intergroup differences (groups A and B) in changes in subcutaneous and preperitoneal fat thickness between visits 1 and 2. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(157KB)
|
Indexing metadata ▾ |
Review
For citations:
Tsygankova O.V., Apartseva N.E., Latyntseva L.D., Ryabikov A.N. Extended-release metformin in patients with prediabetes, chronic heart failure and abdominal obesity in light of the effect on fat depot compartments and glucose metabolism parameters. Diabetes mellitus. 2024;27(4):357-367. (In Russ.) https://doi.org/10.14341/DM13189

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).