Preview

Diabetes mellitus

Advanced search

Characteristics of patients with diagnosis of maturity-onset diabetes of the young, according to the Russian diabetes registry

https://doi.org/10.14341/DM13100

Abstract

BACKGROUND: Molecular genetic testing (MGT) is increasingly accessible, improving diagnosis of monogenic diabetes (DM), particularly maturity-onset diabetes of the young (MODY). While most MODY research focuses on pediatric populations, diagnosis is possible after age 18. The Federal Diabetes Registry (FDR) offers unique insights into real-world management of MODY patients.

AIM: To analyze the clinical features of DM onset, carbohydrate metabolism, complications, and hypoglycemic therapy (HT) in patients with the main types of MODY based on the FDR data.

MATERIALS AND METHODS: A cross-sectional analysis of the FDR was conducted. All patients with registered MODY diagnoses (MODY-1, MODY-2, MODY-3, or other) as of June 1, 2023, were included. The specified MODY type was considered indicative of prior MGT. Direct MGT results are not recorded in the FDR.

RESULTS: The study included 640 patients. MODY2 was the most prevalent type (69.4%), followed by MODY1 (18.2%) and MODY3 (12.4%). The median age of DM diagnosis was 19 years for MODY1, 10 years for MODY2, and 14 years for MODY3. The majority of patients (71.4%) were diagnosed with MODY before the age of 18 years.

While 61% of MODY2 patients received monotherapy with diet, others received various ADT. Sulfonylureas were commonly prescribed for MODY3 patients (45.8%), and for a smaller portion of MODY1 patients (14.1%). Insulin therapy was more frequent in MODY1 and 3 (35.9% and 31.2%, respectively). The target glycated hemoglobin level was achieved in 82% of MODY2 patients and in 50.7% and 52.9% of MODY1 and 3 patients, respectively.

Diabetic complications were observed in 6.04% of MODY2 patients, 23.0% of MODY1 patients, and 22.0% of MODY3 patients. Specific complications included diabetic retinopathy (5.75%, 1.21%, and 3.39% in MODY1, MODY2, and MODY3, respectively), diabetic nephropathy (10.3%, 2.11%, and 11.9%), and diabetic polyneuropathy (14.9%, 4.53%, and 15.3%).

CONCLUSION: The FDR analysis revealed real-world practice patterns in MODY management, highlighting a lack of standardized treatment approaches and potentially unnecessary insulin use. These findings, coupled with an expected rise in MODY diagnoses, underscore the need for clinical guidelines for this population.

About the Authors

N. V. Rusyaeva
Endocrinology Research Centre
Russian Federation

Nadezhda V. Rusyaeva, MD, PhD student; Researcher ID: AAY-6365-2021; Scopus Author ID: 57220024968.

11 Dm. Ulyanova street, 117036 Moscow


Competing Interests:

none



I. V. Kononenko
Endocrinology Research Centre
Russian Federation

Irina V. Kononenko - MD, PhD, Associate Professor; Researcher ID: H-5947-2016; Scopus Author ID: 35744972400.

Moscow


Competing Interests:

none



O. K. Vikulova
Endocrinology Research Centre
Russian Federation

Olga K. Vikulova - MD, PhD, Associate Professor; Researcher ID: AAB-1682-2020; Scopus Author ID: 8697054500.

Moscow


Competing Interests:

none



M. A. Isakov
Endocrinology Research Centre
Russian Federation

Mikhail А. Isakov - PhD in Biology; Scopus Author ID: 36141603900.

Moscow


Competing Interests:

none



M. V. Shestakova
Endocrinology Research Centre
Russian Federation

Marina V. Shestakova - MD, PhD, Professor, Academician of the RAS; Researcher ID: D-9123-2012; Scopus Author ID: 7004195530.

Moscow


Competing Interests:

none



N. G. Mokrysheva
Endocrinology Research Centre
Russian Federation

Natalya G. Mokrysheva - MD, PhD, Professor; Researcher ID: AAY-3761-2020; Scopus Author ID: 35269746000.

Moscow


Competing Interests:

none



References

1. Nkonge KM, Nkonge DK, Nkonge TN. The epidemiology, molecular pathogenesis, diagnosis, and treatment of maturity-onset diabetes of the young (MODY). Clinical Diabetes and Endocrinology. 2020;6(1):20. doi: https://doi.org/10.1186/s40842-020-00112-5

2. Kleinberger JW, Pollin TI. Undiagnosed MODY: Time for Action. Curr Diab Rep. 2015;15(12):110. doi: https://doi.org/10.1007/s11892-015-0681-7

3. Firdous P, Nissar K, Ali S, et al. Genetic Testing of Maturity-Onset Diabetes of the Young Current Status and Future Perspectives. Front Endocrinol (Lausanne). 2018;9:253. doi: https://doi.org/10.3389/fendo.2018.00253

4. Tosur M, Philipson LH. Precision diabetes: Lessons learned from maturity‐onset diabetes of the young (MODY). J Diabetes Investig. 2022;13(9):1465-1471. doi: https://doi.org/10.1111/jdi.13860

5. Hattersley AT, Turner RC, Permutt MA, et al. Linkage of type 2 diabetes to the glucokinase gene. Lancet. 1992;339(8805):1307-1310. doi: https://doi.org/10.1016/0140-6736(92)91958-b

6. Prudente S, Jungtrakoon P, Marucci A, et al. Loss-of-Function Mutations in APPL1 in Familial Diabetes Mellitus. Am J Hum Genet. 2015;97(1):177-185. doi: https://doi.org/10.1016/j.ajhg.2015.05.011

7. Dedov II, Zubkova NA, Arbatskaya NY, Akopova AG, Tyul’pakov AN MODY2: Clinical and molecular genetic characteristics of 13 cases of the disease. The first description of MODY in Russia. Problems of Endocrinology. 2009;55(3):3-7. (In Russ.) doi: https://doi.org/10.14341/probl20095533-7

8. Gioeva OA, Kolodkina AA, Vasilyev EV, et al. Hereditary variant of diabetes mellitus caused by a defect of the NEUROD1 gene (MODY6): the first description in Russia. Problems of Endocrinology. 2016;62(3):16-20. (In Russ.) doi: https://doi.org/10.14341/probl201662316-20

9. Zubkova NA, Gioeva OA, Petrov VM, et al. Monogenic diabetes associated with PAX4 gene mutations (MODY9): first description in Russia. Diabetes mellitus. 2017;20(5):384-387. (In Russ.) doi: https://doi.org/10.14341/DM9322

10. Sechko EA, Kuraeva TL, Andrianova EA, et al. MODY caused by a mutation in the insulin gene. Diabetes Mellitus. 2022;25(1):89-94. (In Russ.) doi: https://doi.org/10.14341/DM12807

11. Kuraeva TL, Sechko EA, Zilberman LI, et al. Molecular genetic and clinical variants MODY2 and MODY3 in children in Russia. Problems of Endocrinology. 2015;61(5):14-25. (In Russ.) doi: https://doi.org/10.14341/probl201561514-25

12. Sechko EA, Kuraeva TL, Zil’berman LI, et al. MODY3 in the children and adolescents: the molecular-genetic basis and clinico-laboratory manifestations. Problems of Endocrinology. 2015;61(3):16-22. (In Russ.) doi: https://doi.org/10.14341/probl201561316-22

13. Zubkova NA, Gioeva OA, Tikhonovich YV, et al. Clinical and molecular genetic characteristics of MODY1—3 cases in the Russian Federation as shown by NGS. Problems of Endocrinology. 2017;63(6):369-378. (In Russ.) doi: https://doi.org/10.14341/probl2017636369-378

14. Alfa-Endo.ru [интернет]. Программа – «Альфа-Эндо» [доступ от 18.04.2024]. Доступ по ссылке: http://alfa-endo.ru/page/programma

15. Rosenfeld E, Thornton PS. Hypoglycemia in Neonates, Infants, and Children. In: Feingold KR, Anawalt B, Blackman MR, et al., eds. Endotext. MDText.com, Inc.; 2000. Accessed 2024. http://www.ncbi.nlm.nih.gov/books/NBK594592/

16. Obshchestvennaya organizatsiya «Rossiiskaya assotsiatsiya endokrinologov». Klinicheskie rekomendatsii «Diagnostika i lechenie vrozhdennogo giperinsulinizma u detei». 2021. (In Russ.) Available from: https://www.endocrincentr.ru/sites/default/files/specialists/science/clinic-recomendations/klinreki_vgi_final.pdf

17. Ovsyannikova AK, Rymar OD, Shakhtshneider EV, et al. MODY in Siberia – molecular genetics and clinical characteristics. Diabetes mellitus. 2017;20(1):5-12. (In Russ.) doi: https://doi.org/10.14341/DM7920

18. Ovsyannikova AK, Shakhtshneider EV, Ivanoshchuk DE, et al. GCK-MODY diabetes course in persons over 18 years of age: prospective observation. Diabetes mellitus. 2021;24(2):133-140. (In Russ.) doi: https://doi.org/10.14341/DM12319

19. Zubkova NA, Rubtsov PM, Burumkulova FF, et al. A synonymous variant in GCK gene as a cause of gestational diabetes mellitus. Diabetes mellitus. 2019;22(2):165-169. (In Russ.) doi: https://doi.org/10.14341/DM9938

20. Zubkova NA, Burumkulova FF, Petrukhin VA, et al. Mutations in transcription factor as rare causes of diabetes in pregnancy. Diabetes mellitus. 2019;22(3):274-280. (In Russ.) doi: https://doi.org/10.14341/DM9945

21. Dedov II, Shestakova MV, Vikulova OK, et al. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010–2022. Diabetes mellitus. 2023;26(2):104-123. (In Russ.) doi: https://doi.org/10.14341/DM13035

22. Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, Ellard S. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia. 2010;53(12):2504-2508. doi: https://doi.org/10.1007/s00125-010-1799-4

23. Kononenko IV, Glibka AA, Zubkova NA, et al. MODY2 diagnostic issues in adults. Diabetes mellitus. 2019;22(4):384-391. (In Russ.) doi: https://doi.org/10.14341/DM10063

24. Amed S, Dean H, Panagiotopoulos C, et al. Type 2 diabetes, medication-induced diabetes, and monogenic diabetes in Canadian children: a prospective national surveillance study. Diabetes care. 2010;33(4):786-791. doi: https://doi.org/10.2337/dc09-1013

25. Galler A, Stange T, Müller G, et al. Incidence of childhood diabetes in children aged less than 15 years and its clinical and metabolic characteristics at the time of diagnosis: data from the Childhood Diabetes Registry of Saxony, Germany. Hormone research in pediatrics. 2010;74(4):285-291. doi: https://doi.org/10.1159/000303141

26. Neu A, Feldhahn L, Ehehalt S, et al. Type 2 diabetes mellitus in children and adolescents is still a rare disease in Germany: a population-based assessment of the prevalence of type 2 diabetes and MODY in patients aged 0-20 years. Pediatric diabetes. 2009;10(7):468-473. doi: https://doi.org/10.1111/j.1399-5448.2009.00528.x

27. Weinreich SS, Bosma A, Henneman L, et al. A decade of molecular genetic testing for MODY: a retrospective study of utilization in The Netherlands. European Journal of Human Genetics. 2015;23(1):29. doi: https://doi.org/10.1038/ejhg.2014.59

28. Pihoker C, Gilliam LK, Ellard S, et al. Prevalence, Characteristics and Clinical Diagnosis of Maturity Onset Diabetes of the Young Due to Mutations in HNF1A, HNF4A, and Glucokinase: Results From the SEARCH for Diabetes in Youth. J Clin Endocrinol Metab. 2013;98(10):4055-4062. doi: https://doi.org/10.1210/jc.2013-1279

29. Sanyora M, Letourneau L, Knight Johnson AE, et al. GCK-MODY in the US Monogenic Diabetes Registry: Description of 27 unpublished variants. Diabetes research and clinical practice. 2019;151. doi: https://doi.org/10.1016/j.diabres.2019.04.017

30. Orphanet: MODY. Accessed 2024. https://www.orpha.net/en/disease/detail/552

31. Kropff J, Selwood MP, McCarthy MI, Farmer AJ, Owen KR. Prevalence of monogenic diabetes in young adults: a community-based, cross-sectional study in Oxfordshire, UK. Diabetologia. 2011;54(5):1261-1263. doi: https://doi.org/10.1007/s00125-011-2090-z

32. Shepherd M, Shields B, Hammersley S, et al. Systematic Population Screening, Using Biomarkers and Genetic Testing, Identifies 2.5% of the U.K. Pediatric Diabetes Population With Monogenic Diabetes. Diabetes Care. 2016;39(11):1879-1888. doi: https://doi.org/10.2337/dc16-0645

33. Davis TM, Makepeace AE, Ellard S, et al. The prevalence of monogenic diabetes in Australia: the Fremantle Diabetes Study Phase II. Med J Aust. 2017;207(8):344-347. doi: https://doi.org/10.5694/mja16.01201

34. Delvecchio M, Mozzillo E, Salzano G, et al. Monogenic Diabetes Accounts for 6.3% of Cases Referred to 15 Italian Pediatric Diabetes Centers During 2007 to 2012. J Clin Endocrinol Metab. 2017;102(6):1826-1834. doi: https://doi.org/10.1210/jc.2016-2490

35. Sechko EA. Sakharnyi diabet MODY2 i MODY3 u detei i podrostkov: molekulyarno-geneticheskie osnovy i klinicheskie osobennosti [dissertation] Moscow; 2016. (In Russ.) Доступно по ссылке: https://www.endocrincentr.ru/sites/default/files/specialists/science/dissertation/sechko_diss.pdf

36. Gioeva OA. Klinicheskie osobennosti i molekulyarnye osnovy sakharnogo diabeta tipa MODY [dissertation] Moscow; 2018. (In Russ.) Доступно по ссылке: https://www.endocrincentr.ru/sites/default/files/specialists/science/dissertation/dissertacia_gioeva_o.a.pdf

37. Spasov AA, Kosolapov VA, Babkov DA, Mayka OY. Glucokinase activators — a promising class of antidiabetic drugs. Problems of Endocrinology. 2018;64(3):180-187. (In Russ.) doi: https://doi.org/10.14341/probl8747

38. Singh R, Pearson ER, Clark PM, Hattersley AT. The long-term impact on offspring of exposure to hyperglycaemia in utero due to maternal glucokinase gene mutations. Diabetologia. 2007;50(3):620-624. doi: https://doi.org/10.1007/s00125-006-0541-8

39. Zubkova NA, Burumkulova FF, Petrukhin VA, et al. Birth weight and length in offsprings of mothers with gestational diabetes mellitus due to mutations in GCK gene. Diabetes Mellitus. 2018;21(2):92-98. (In Russ.) doi: https://doi.org/10.14341/DM9429

40. Delvecchio M, Pastore C, Giordano P. Treatment Options for MODY Patients: A Systematic Review of Literature. Diabetes Ther. 2020;11(8):1667-1685. doi: https://doi.org/10.1007/s13300-020-00864-4

41. Greeley SAW, Polak M, Njølstad PR, et al. ISPAD Clinical Practice Consensus Guidelines 2022: The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 2022;23(8):1188-1211. doi: https://doi.org/10.1111/pedi.13426

42. Yamagata K, Oda N, Kaisaki PJ, et al. Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature. 1996;384:455-458. doi: https://doi.org/10.1038/384455a0

43. Li LM, Jiang BG, Sun LL. HNF1A: From Monogenic Diabetes to Type 2 Diabetes and Gestational Diabetes Mellitus. Front Endocrinol (Lausanne). 2022;13:829565. doi: https://doi.org/10.3389/fendo.2022.829565

44. Zubkova NA, Arbatskaya NY, Petryaikina EE, et al. Type 3 form of MODY: the clinical and molecular-genetic characteristic. Nine cases of the disease. Problems of Endocrinology. 2014;60(1):51-56. (In Russ.) doi: https://doi.org/10.14341/probl201460151-56

45. Murphy R, Ellard S, Hattersley AT. Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. Nat Clin Pract Endocrinol Metab. 2008;4(4):200-213. doi: https://doi.org/10.1038/ncpendmet0778

46. Pearson ER, Liddell WG, Shepherd M, et al. Sensitivity to sulphonylureas in patients with hepatocyte nuclear factor-1alpha gene mutations: evidence for pharmacogenetics in diabetes. Diabetic medicine: a journal of the British Diabetic Association. 2000;17(7):543-545. doi: https://doi.org/10.1046/j.1464-5491.2000.00305.x

47. Pearson ER, Starkey BJ, Powell RJ, Gribble FM, Clark PM, Hattersley AT. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet. 2003;362(9392):1275-1281. doi: https://doi.org/10.1016/S0140-6736(03)14571-0

48. Tuomi T, Honkanen EH, Isomaa B, Sarelin L, Groop LC. Improved prandial glucose control with lower risk of hypoglycemia with nateglinide than with glibenclamide in patients with maturity-onset diabetes of the young type 3. Diabetes Care. 2006;29(2):189-194. doi: https://doi.org/10.2337/diacare.29.02.06.dc05-1314

49. Naylor RN, Patel KA, Kettunen JLT, et al. Systematic Review of Treatment of Beta-Cell Monogenic Diabetes. medRxiv Prepr Serv Heal Sci. 2023. doi: https://doi.org/10.1101/2023.05.12.23289807

50. Bonner C, Saponaro C. Where to for precision treatment of HNF1A-MODY? Diabetologia. 2022;65(11):1825-1829. doi: https://doi.org/10.1007/s00125-022-05696-4

51. Christensen AS, Hædersdal S, Støy J, et al. Efficacy and Safety of Glimepiride With or Without Linagliptin Treatment in Patients With HNF1A Diabetes (Maturity-Onset Diabetes of the Young Type 3): A Randomized, Double-Blinded, Placebo-Controlled, Crossover Trial (GLIMLINA). Diabetes Care. 2020;43(9):2025-2033. doi: https://doi.org/10.2337/dc20-0408

52. Østoft SH, Bagger JI, Hansen T, et al. Glucose-lowering effects and low risk of hypoglycemia in patients with maturity-onset diabetes of the young when treated with a GLP-1 receptor agonist: a double-blind, randomized, crossover trial. Diabetes Care. 2014;37(7):1797-1805. doi: https://doi.org/10.2337/dc13-3007

53. Hohendorff J, Szopa M, Skupien J, et al. A single dose of dapagliflozin, an SGLT-2 inhibitor, induces higher glycosuria in GCK- and HNF1A-MODY than in type 2 diabetes mellitus. Endocrine. 2017;57(2):272-279. doi: https://doi.org/10.1007/s12020-017-1341-2

54. Steele AM, Shields BM, Wensley KJ, Colclough K, Ellard S, Hattersley AT. Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia. JAMA. 2014;311(3):279-286. doi: https://doi.org/10.1001/jama.2013.283980

55. Isomaa B, Henricsson M, Lehto M, et al. Chronic diabetic complications in patients with MODY3 diabetes. Diabetologia. 1998;41(4):467-473. doi: https://doi.org/10.1007/s001250050931

56. Raschet riska MODY diabeta [Internet]. Endocrinology Research Centre. [cited 2024 Apr 18. Available from: https://www.endocrincentr.ru/raschet-riska-mody-diabeta (In Russ.)]

57. Laptev DN, Sechko EA, Romanenkova EM, et al. Clinical prediction model for MODY type diabetes mellitus in children. Diabetes mellitus. 2024;27(1):33-40. (In Russ.) doi: https://doi.org/10.14341/DM13091

58. Shields BM, McDonald TJ, Ellard S, Campbell MJ, Hyde C, Hattersley AT. The development and validation of a clinical prediction model to determine the probability of MODY in patients with young-onset diabetes. Diabetologia. 2012;55(5):1265-1272. doi: https://doi.org/10.1007/s00125-011-2418-8

59. Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937-952. doi: https://doi.org/10.1016/S0140-6736(04)17018-9

60. Steele AM, Shields BM, Shepherd M, Ellard S, Hattersley AT, Pearson ER. Increased all-cause and cardiovascular mortality in monogenic diabetes as a result of mutations in the HNF1A gene. Diabet Med. 2010;27(2):157-161. doi: https://doi.org/10.1111/j.1464-5491.2009.02913.x


Supplementary files

1. Figure 1. Study design.
Subject
Type Исследовательские инструменты
View (626KB)    
Indexing metadata ▾
2. Figure 2. Distribution of patients with confirmed MODY type in the Federal Diabetes Registry.
Subject
Type Исследовательские инструменты
View (75KB)    
Indexing metadata ▾
3. Figure 3. Antidiabetic therapy in patients with MODY1, 2, and 3 according to the Federal Diabetes Registry data. Patients on bolus insulin only (1 patient in each group), patients on continuous subcutaneous insulin infusion (2 patients in the MODY1 group), and patients on mixed insulin preparations (3 patients in the MODY2 group) are not shown on the graph.
Subject
Type Исследовательские инструменты
View (171KB)    
Indexing metadata ▾
4. Figure 4. Frequency of prescription of different classes of antidiabetic drugs in patients with MODY1, 2, and 3 according to the Federal Diabetes Registry data.
Subject
Type Исследовательские инструменты
View (178KB)    
Indexing metadata ▾
5. Figure 5. Degree of exceeding the target glycated hemoglobin level in the groups.
Subject
Type Исследовательские инструменты
View (151KB)    
Indexing metadata ▾
6. Figure 6. Proportion of patients with microvascular complications (diabetic retinopathy, diabetic nephropathy, diabetic neuropathy) of diabetes in groups with different MODY types.
Subject
Type Исследовательские инструменты
View (146KB)    
Indexing metadata ▾
7. Figure 7. Proportion of patients with dyslipidemia and arterial hypertension in the groups.
Subject
Type Исследовательские инструменты
View (117KB)    
Indexing metadata ▾

Review

For citations:


Rusyaeva N.V., Kononenko I.V., Vikulova O.K., Isakov M.A., Shestakova M.V., Mokrysheva N.G. Characteristics of patients with diagnosis of maturity-onset diabetes of the young, according to the Russian diabetes registry. Diabetes mellitus. 2024;27(4):321-335. (In Russ.) https://doi.org/10.14341/DM13100

Views: 2340


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)