Overview of modern sensors for continuous glucose monitoring
https://doi.org/10.14341/DM13043
Abstract
The incidence of diabetes is increasing in all age groups. The use of technological devices for the treatment of diabetes, such as continuous glucose monitoring (CGM), is expanding and is associated with improved control of blood glucose levels in order to prevent complications of this disease. Reducing glycemic variability and maintaining optimal glycemic control is critical to the management of patients with type 1 diabetes. The usefulness of glycemic monitoring devices has also been shown for patients with type 2 diabetes. CGM technology is constantly being improved in terms of analytical performance, biocompatibility, wear duration, safety and clinical performance. However, commonly used minimally invasive CGMs do not measure blood glucose directly, but instead measure the glucose concentration in the interstitial fluid (IF), so changes in IF glucose occur with a delay of 5 to 15 minutes compared to blood glucose. In addition, the lifetime of minimally invasive CGM sensors is relatively short, up to 14 days. Therefore, the introduction into clinical practice of devices for non-invasive glucose measurement in people with diabetes, which overcome the above-mentioned limitations of minimally invasive CGM, will expand the possibilities of glucose monitoring among patients with diabetes. The purpose of this review was to present the technologies of CGM system sensors approved for medical use in Russia and other countries.
About the Authors
K. T. MomynalievRussian Federation
Kuvat T. Momynaliev, PhD in Biology, Associate Professor
Scopus Author ID: 6603847759
16/24 Kashirskoye sh., 115478 Moscow
M. V. Prokopiev
Russian Federation
Maxim V. Prokopiev, PhD
Moscow
I. V. Ivanov
Russian Federation
Igor V. Ivanov, PhD
Moscow
References
1. International Diabetes Federation. IDF Diabetes Atlas. 10th ed. 2022 [cited 29.11.2023]. Available from: https://diabetesatlas.org/atlas/tenth-edition/
2. Dedov II, Shestakova MV, Vikulova OK, et al. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010 -2022. Diabetes Mellitus. 2023;26(2):104-123. (In Russ.). doi: https://doi.org/10.14341/DM13035
3. Rossijskaja associacija jendokrinologov. Klinicheskie rekomendacii. Saharnyj diabet 2 tipa u vzroslyh. Moscow: Ministerstvo zdravoohranenija RF; 2022. (In Russ.). URL: https://cr.minzdrav.gov.ru/schema/290_2. 29.11.2023.
4. Beck RW, Bergenstal RM, Laffel LM, Pickup JC. Advances in technology for management of type 1 diabetes. Lancet. 2019;394(10205):1265-1273. doi: https://doi.org/10.1016/S0140-6736(19)31142-0
5. DeSalvo DJ, Miller KM, Hermann JM, et al. Continuous glucose monitoring and glycemic control among youth with type 1 diabetes: International comparison from the T1D Exchange and DPV Initiative. Pediatr Diabetes. 2018;19(7):1271-1275. doi: https://doi.org/10.1111/pedi.12711
6. Foster NC, Beck RW, Miller KM, et al. State of type 1 diabetes management and outcomes from the T1D exchange in 2016–2018 [published correction appears in Diabetes Technol Ther. 2019;21(4):230]. Diabetes Technol Ther. 2019;21(2):66-72. doi: https://doi.org/10.1089/dia.2018.0384
7. Cardona-Hernandez R, Schwandt A, Alkandari H, et al. Glycemic outcome associated with insulin pump and glucose sensor use in children and adolescents with type 1 diabetes. Data from the International Pediatric Registry SWEET. Diabetes Care. 2021;44(5):1176-1184. doi: https://doi.org/10.2337/dc20-1674
8. Pauley ME, Tommerdahl KL, Snell-Bergeon JK, Forlenza GP. Continuous glucose monitor, insulin pump, and automated insulin delivery therapies for type 1 diabetes: An update on potential for cardiovascular benefits. Curr Cardiol Rep. 2022;24(12):2043-2056. doi: https://doi.org/10.1007/s11886-022-01799-x
9. Bruttomesso D, Costa S, Baritussio A. Continuous subcutaneous insulin infusion (CSII) 30 years later: still the best option for insulin therapy. Diabetes Metab Res Rev. 2009;25(2):99-111. doi: https://doi.org/10.1002/dmrr.931
10. Laffel LM, Kanapka LG, Beck RW, et al. Effect of Continuous Glucose monitoring on glycemic control in adolescents and young adults with type 1 diabetes: A randomized clinical trial. JAMA. 2020;323(23):2388-2396. doi: https://doi.org/10.1001/jama.2020.6940
11. Riddlesworth T, Price D, Cohen N, Beck RW. Hypoglycemic event frequency and the effect of continuous glucose monitoring in adults with type 1 diabetes using multiple daily insulin injections. Diabetes Ther. 2017;8(4):947-951. doi: https://doi.org/10.1007/s13300-017-0281-4
12. Irace C, Cutruzzolà A, Nuzzi A, et al. Clinical use of a 180-day implantable glucose sensor improves glycated haemoglobin and time in range in patients with type 1 diabetes. Diabetes Obes Metab. 2020;22(7):1056-1061. doi: https://doi.org/10.1111/dom.13993
13. Rossijskaja associacija jendokrinologov. Klinicheskie rekomendacii. Saharnyj diabet 1 tipa u vzroslyh. Moscow: Ministerstvo zdravoohranenija RF; 2022. (In Russ.). URL: https://cr.minzdrav.gov.ru/schema/286_2. С
14. Chen C, Zhao XL, Li ZH, et al. Current and emerging technology for continuous glucose monitoring. Sensors (Basel). 2017;17(1):182. doi: https://doi.org/10.3390/s17010182
15. Schmelzeisen-Redeker G, Schoemaker M, Kirchsteiger H, et al. Time delay of CGM Sensors: relevance, causes, and countermeasures. J Diabetes Sci Technol. 2015;9(5):1006-1015. doi: https://doi.org/10.1177/1932296815590154
16. Bailey T, Bode BW, Christiansen MP, et al. The performance and usability of a factory-calibrated flash glucose monitoring system. Diabetes Technol Ther. 2015;17(11):787-794. doi: https://doi.org/10.1089/dia.2014.0378
17. Bailey TS, Chang A, Christiansen M. Clinical accuracy of a continuous glucose monitoring system with an advanced algorithm. J Diabetes Sci Technol. 2015;9(2):209-214. doi: https://doi.org/10.1177/1932296814559746
18. Rebrin K, Steil GM. Can interstitial glucose assessment replace blood glucose measurements? Diabetes Technol Ther. 2000;2(3):461-472. doi: https://doi.org/10.1089/15209150050194332
19. Wang J. Electrochemical glucose biosensors. Chem Rev. 2008;108(2):814-825. doi: https://doi.org/10.1021/cr068123a
20. Kavanagh P, Leech D. Mediated electron transfer in glucose oxidising enzyme electrodes for application to biofuel cells: recent progress and perspectives. Phys Chem Chem Phys. 2013;15(14):4859-4869. doi: https://doi.org/10.1039/c3cp44617d
21. Wongkaew N, Simsek M, Griesche C, Baeumner AJ. Functional nanomaterials and nanostructures enhancing electrochemical biosensors and Lab-on-a-Chip performances: recent progress, applications, and future perspective. Chem Rev. 2019;119(1):120-194. doi: https://doi.org/10.1021/acs.chemrev.8b00172
22. Cappon G, Vettoretti M, Sparacino G, Facchinetti A. Continuous glucose monitoring sensors for diabetes management: A review of technologies and applications. Diabetes Metab J. 2019;43(4):383-397. doi: https://doi.org/10.4093/dmj.2019.0121
23. Almurashi AM, Rodriguez E, Garg SK. Emerging diabetes technologies: continuous glucose monitors/artifi pancreases. J Indian Inst Sci. 2023;103(1):205-230. doi: https://doi.org/10.1007/s41745-022-00348-3
24. Feldman B, McGarraugh G, Heller A, et al. FreeStyle: a smallvolume electrochemical glucose sensor for home blood glucose testing. Diabetes Technol Ther. 2000;2(2):221-229. doi: https://doi.org/10.1089/15209150050025177
25. Ungerstedt U, Pycock C. Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss. 1974;30(1-3):44-55.
26. Valgimigli F, Lucarelli F, Scuffi C, et al. Evaluating the clinical accuracy of GlucoMen®Day: A novel microdialysis-based continuous glucose monitor. J Diabetes Sci Technol. 2010;4(5):1182-1192. doi: https://doi.org/10.1177/193229681000400517
27. WaveForm Diabetes (formerly Agamatrix), Bayer CGM. Desang diabetes services. June 16, 2020 [cited 15.12.2020]. Available from: https://www.desang.net/2020/06/waveform-diabetes-formerly-agamatrix-and-bayer-cgm/
28. Hochfellner DA, Simic A, Taucher MT, et al. Accuracy Assessment of the GlucoMen® Day CGM system in individuals with type 1 diabetes: A pilot study. Biosensors (Basel). 2022;12(2):106. doi: https://doi.org/10.3390/bios12020106
29. Jernelv IL, Milenko K, Fuglerud SS, et al. A review of optical methods for continuous glucose monitoring. Appl Spectrosc Rev. 2019;54(7):543-572. doi: https://doi.org/10.1080/05704928.2018.1486324
30. Kocheril PA, Lenz KD, Mukundan H. Total internal reflection of two lasers in a single planar optical waveguide. ECS Sensors Plus. 2022;1(2):021601. doi: https://doi.org/10.1149/2754-2726/ac6523
31. Eversense Continuous Glucose Monitoring System. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf16/P160048B.pdf [cited 29.11.2023].
32. Kropff J, Choudhary P, Neupane S, et al. Accuracy and longevity of an implantable continuous glucose sensor in the PRECISE study: A 180-day, prospective, multicenter, pivotal trial. Diabetes Care. 2017;40(1):63-68. doi: https://doi.org/10.2337/dc16-1525
33. Christiansen MP, Klaff LJ, Brazg R, et al. A prospective multicenter evaluation of the accuracy of a novel implanted continuous glucose sensor: PRECISE II. Diabetes Technol Ther. 2018;20(3):197-206. doi: https://doi.org/10.1089/dia.2017.0142
34. Christiansen MP, Klaff LJ, Bailey TS, et al. A prospective multicenter evaluation of the accuracy and safety of an implanted continuous glucose sensor: The PRECISION study. Diabetes Technol Ther. 2019;21(5):231-237. doi: https://doi.org/10.1089/dia.2019.0020
35. Sieg A, Guy RH, Delgado-Charro MB. Noninvasive glucose monitoring by reverse iontophoresis in vivo: application of the internal standard concept. Clin Chem. 2004;50(8):1383-1390. doi: https://doi.org/10.1373/clinchem.2004.032862
36. GlucoWatch® G2 Biographer. Available from: https://www.accessdata. fda.gov/cdrh_docs/pdf/p990026s008b.pdf [cited 29.11.2023].
37. Tierney MJ, Tamada JA, Potts RO, et al. Clinical evaluation of the GlucoWatch® biographer: a continual, non-invasive glucose monitor for patients with diabetes. Biosens Bioelectron. 2001;16(9-12):621-629. doi: https://doi.org/10.1016/S0956-5663(01)00189-0
38. Potts RO, Tamada JA, Tierney MJ. Glucose monitoring by reverse iontophoresis. Diabetes Metab Res Rev. 2002;189(S1):S49-S53. doi: https://doi.org/10.1002/dmrr.210
39. Caduff A, Dewarrat F, Talary M, et al. Non-invasive glucose monitoring in patients with diabetes: a novel system based on impedance spectroscopy. Biosens Bioelectron. 2006;22(5):598-604. doi: https://doi.org/10.1016/j.bios.2006.01.031
40. Weinzimer SA. PENDRA: the once and future noninvasive continuous glucose monitoring device? Diabetes Technol Ther. 2004;6(4):442-444. doi: https://doi.org/10.1089/1520915041706018
41. Wentholt IM, Hoekstra JB, Zwart A, DeVries JH. Pendra goes Dutch: lessons for the CE mark in Europe. Diabetologia. 2005;48(6):1055-1058. doi: https://doi.org/10.1007/s00125-005-1754-y
42. Freckmann G. Basics and use of continuous glucose monitoring (CGM) in diabetes therapy. J Lab Med. 2020;44(2):71-79. doi: https://doi.org/10.1515/labmed-2019-0189
43. Witkowska Nery E, Kundys M, Jeleń PS, Jönsson-Niedziółka M. Electrochemical glucose sensing: Is there still room for improvement? Anal Chem. 2016;88(23):11271-11282. doi: https://doi.org/10.1021/acs.analchem.6b03151
44. Joseph JI. Review of the long-term implantable senseonics continuous glucose monitoring system and other continuous glucose monitoring systems [published correction appears in J Diabetes Sci Technol. 2021 Dec 14]. J Diabetes Sci Technol. 2021;15(1):167-173. doi: https://doi.org/10.1177/1932296820911919
45. Saraoğlu HM, Koçan M. A study on non‐invasive detection of blood glucose concentration from human palm perspiration by using artificial neural networks. Expert Syst. 2010;27(3):156-165. doi: https://doi.org/10.1111/j.1468-0394.2010.00523.x
46. Du Y, Zhang W, Wang ML. An on-chip disposable salivary glucose sensor for diabetes control. J Diabetes Sci Technol. 2016;10(6):1344-1352. doi: https://doi.org/10.1177/1932296816642251
47. Chakraborty P, Dhar S, Deka N, et al. Non-enzymatic salivary glucose detection using porous CuO nanostructures. Sensors Actuators B Chem. 2020;302:127134. doi: https://doi.org/10.1016/j.snb.2019.127134
48. Macaya DJ, Nikolou M, Takamatsu S, et al. Simple glucose sensors with micromolar sensitivity based on organic electrochemical transistors. Sensors Actuators B Chem. 2007;123(1):374-378. doi: https://doi.org/10.1016/j.snb.2006.08.038
49. Available from: https://www.bloomberg.com/news/articles/2023-02-22/apple-watch-blood-glucose-monitor-could- revolutionize-diabetes-care-aap [cited 29.11.2023].
50. Available from: https://www.pkvitality.com/wp-content/uploads/2022/07/PKvitality-FIH-3-ENG-final.pdf [cited 29.11.2023]
Supplementary files
|
1. Figure 1. A continuous glucose monitoring system consists of a transmitter, a glucose sensor (A), and a receiver or display (B). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(275KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Different generations of electrochemical glucose sensor. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(185KB)
|
Indexing metadata ▾ |
|
3. Figure 3. A — Guardian 3 Medtronic sensor. B — a cross section of the sensor showing the different layers it uses. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(314KB)
|
Indexing metadata ▾ |
|
4. Figure 4. A — schematic representation of a microdialysis probe. B — image of GlucoMen Day CGM with disposable sensor sets. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(237KB)
|
Indexing metadata ▾ |
|
5. Figure 5. A — determination of glucose level using a fluorescent test. The interaction of glucose with a fluorophore results in fluorescence, and in the absence of glucose, fluorescence is suppressed. Б — subcutaneous implantable optical sensor of the Eversense CGM. B — Eversense transmitter on the shoulder. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(189KB)
|
Indexing metadata ▾ |
Review
For citations:
Momynaliev K.T., Prokopiev M.V., Ivanov I.V. Overview of modern sensors for continuous glucose monitoring. Diabetes mellitus. 2023;26(6):575-584. (In Russ.) https://doi.org/10.14341/DM13043

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).