Metabolic biomarkers in patients with type 2 diabetes mellitus and heart failure with preserved ejection fraction
https://doi.org/10.14341/DM13028
Abstract
BACKGROUND: Half of all patients with chronic heart failure (CHF) have preserved ejection fraction (CHF-nEF). The drug’s use effective for treatment of CHF with reduced ejection fraction (CHF-nFV) reduces the hospitalization incidence but does not affect the cardiovascular incidence or overall mortality in patients with CHF-nFV. Finding differences between CSN-SFV and CSN-nFV biomarkers is a pressing scientific problem.
AIM: To study the metabolic disorders biomarkers intergenic relationships, myocardial damage, and to evaluate their role in the CHF development in patients with DM2.
MATERIALS AND METHODS: We studied the lipid and carbohydrate metabolism disorder genes polymorphisms frequencies in patients with CHF-CFV and DM2 (48 patients), CHF-NFV and DM2 (46) and patients with metabolic syndrome (MS) without CHF (68), mean age of patients was 69,7±5,3 yo. DNA was isolated from venous blood according to the manufacturer’s methodology. Gene polymorphisms were determined by real time PCR. The studied polymorphisms correlations with clinical and laboratory data and associations between clinical and laboratory tests were identified by regression analysis.
RESULTS: In the control group, PPARG, APOC3 C3238G rs5128, LIPC -250 G>A rs2070895, APOA1 G-75A rs670, FABP2 Ala54Thr G>A rs1799883, ADRB2 5318 C>G rs1042714 genes polymorphisms, along with co-dependent ADRB3, FTO, FABP2 genes polymorphic form a gene network regulating plasma concentrations of LDL, uric acid and CAD. Gene polymorphisms have been found to be associated with clinical and/or laboratory parameters in patients with CHF-CFV: PPARGC1AGly482Ser G>A rs8192678 with CAD; PPARGT-2821C rs12497191 with glycated hemoglobin level; FTO A>T rs9939609 (α-ketoglutarate dependent dioxygenase gene) with waist circumference; LEPR A>G rs1137101 (leptin receptor gene) with MAP. The following polymorphisms were found to be associated in patients with CHF-nFV: LIPC-250 G>A rs2070895 (liver triglyceride lipase gene) with MAP; PPARGC1A Gly482Ser G>A rs8192678 with MAP; FTO A>T rs9939609 with waist volume.
CONCLUSIONS: From the study results, it is evident that patients with DM2 having CHF with different PV differ significantly among themselves by the presence of polymorphic genes prone to network interactions. The greatest number of such interactions is observed in the group of CHF-sFV, which determines a more complex course of this variant of CHF than in patients with CHF-nFV.
About the Authors
T. S. SveklinaRussian Federation
Tatiana S. Sveklina - PhD.
63 Suvorovskiy av., 191124 Saint Petersburg
Competing Interests:
none
S. B. Shustov
Russian Federation
Sergey B. Shustov - MD, PhD, Professor.
Saint Petersburg
Competing Interests:
none
S. N. Kolyubayeva
Russian Federation
Svetlana N. Kolyubaeva - PhD in Biology.
Saint Petersburg
Competing Interests:
none
A. N. Kuchmin
Russian Federation
Alexey N. Kuchmin - MD, PhD, Professor.
Saint Petersburg
Competing Interests:
none
V. A. Kozlov
Russian Federation
Vadim A. Kozlov - PhD in Biology.
Cheboksary
Competing Interests:
none
E. V. Smirnova
Russian Federation
Elena V. Smirnova - PhD.
Saint Petersburg
Competing Interests:
none
A. V. Zharkov
Russian Federation
Alexandr V. Zharkov - PhD, assistant.
Saint Petersburg
Competing Interests:
none
References
1. Shah SJ, Kitzman DW, Borlaug BA, et al. Phenotype-Specific Treatment of Heart Failure With Preserved Ejection Fraction: A Multiorgan Roadmap. Circulation. 2016;134(1):73-90. https://doi.org/10.1161/CIRCULATIONAHA.116.021884
2. Gevaert AB, Kataria R, Zannad F, et al. Heart failure with preserved ejection fraction: recent concepts in diagnosis, mechanisms and management. Heart. 2022;108(17):1342-1350. https://doi.org/10.1136/heartjnl-2021-319605
3. Sanders-van Wijk S, van Empel V, Davarzani N, et al. TIME-CHF investigators. Circulating biomarkers of distinct pathophysiological pathways in heart failure with preserved vs. reduced left ventricular ejection fraction. Eur J Heart Fail. 2015;17:1006–1014. https://doi.org/10.1002/ejhf.414
4. Franssen C, Chen S, Unger A, et al. Myocardial Microvascular Inflammatory Endothelial Activation in Heart Failure With Preserved Ejection Fraction. JACC Heart Fail. 2016;4:312–314. https://doi.org/10.1016/j.jchf.2015.10.007
5. Shah SJ, Kitzman DW, Borlaug BA, et al. Phenotype-Specific Treatment of Heart Failure With Preserved Ejection Fraction: A Multiorgan Roadmap. Circulation. 2016;134(1):73-90. https://doi.org/10.1161/CIRCULATIONAHA.116.021884
6. Мареев В.Ю., Фомин И.В., Агеев Ф.Т. и др. Клинические рекомендации ОССН РКО РНМОТ. Сердечная недостаточность: хроническая (ХСН) и острая декомпенсированная (ОДСН). Диагностика, профилактика и лечение // Кардиология. — 2018. — Т.58. — №6S. — С. 815. https://doi.org/10.18087/cardio.2475
7. Рекомендации экспертов ВНОК по диагностике и лечению МС (2-й пересмотр) // Кардиоваск. тер. и профилакт. — 2009. — Т.7. — №٦. (Прил. ٢).
8. Сахарный диабет ٢ типа (Клинические рекомендации). Российская организация эндокринологов. — 2019. — 228 с. [Цифровой ресурс] https://www.endocrincentr.ru/sites/default/files/specialists/science/clinic-recomendations/saharnyy_diabet_2_tipa_u_vzroslyh.pdf
9. Ašić A, Salazar R, Storm N, et al. Population study of thrombophilic markers and pharmacogenetic markers of warfarin prevalence in Bosnia and Herzegovina. Croat. Med. J. 2019; 60(3): 212–220. https://doi.org/10.3325/cmj.2019.60.212
10. Matsunaga T, Naito M, Yin G, et al. Associations between peroxisome proliferator-activated receptor γ (PPAR-γ) polymorphisms and serum lipids: Two cross-sectional studies of community-dwelling adults. Gene. 2020;762:145019. https://doi.org/10.1016/j.gene.2020.145019
11. Feng DW, Ma RL, Guo H, et al. Association of APOA1 gene polymorphisms (rs670, rs5069, and rs2070665) with dyslipidemia in the Kazakhs of Xinjiang. Genet Mol Res. 2016;15(2). https://doi.org/10.4238/gmr.15028094
12. Zafar U, Khaliq S, Ali Z, Lone KP. Adrenergic receptor beta-3 rs4994 (T>C) and liver X receptor alpha rs12221497 (G>A) polymorphism in Pakistanis with metabolic syndrome. Chin J Physiol. 2019;62(5):196-202. https://doi.org/10.4103/CJP.CJP_45_19
13. Surguchov AP, Page GP, Smith L, et al. Polymorphic markers in Apolipoprotein C–III gene flanking regions and hypertriglyceridemia. Arterioscler Thromb Vasc Biol. ١٩٩٦, 16: ٩٤١–٩٤٧
14. Vilella-Figuerola A, Gallinat A, Escate R, et al. Systems Biology in Chronic Heart Failure-Identification of Potential miRNA Regulators. Int J Mol Sci. 2022;23(23):15226. https://doi.org/10.3390/ijms232315226
15. Исакова Ж.Т., Талайбекова Э.Т., Жыргалбекова Б.Ж. и др. Межгенные взаимодействия и вклад полиморфных локусов генов KCNJ١١, ADIPOQ, оментина, лептина, TCF7L2 и PPARg в развитии сахарного диабета ٢-го типа в Кыргызской популяции: предварительные результаты исследования по типу случай-контроль с использованием MDR-анализа // Проблемы эндокринологии. 2018. — Т.64. — №4. — С. 216225. [Цифровой ресурс] https://doi.org/10.14341/probl8344
16. Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4:Article17. https://doi.org/10.2202/1544-6115.1128
17. Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocrine Reviews. 1999;20(5):649–688. https://doi.org/10.1210/edrv.20.5.0380
18. Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev. 2003;24(1):78-90. https://doi.org/10.1210/er.2002-0012
19. Pan J, Guleria RS, Zhu S, Baker KM. Molecular Mechanisms of Retinoid Receptors in Diabetes-Induced Cardiac Remodeling. J Clin Med. 2014;3(2):566-94. https://doi.org/10.3390/jcm3020566
20. Liu J, Wang P, Luo J, et al. Peroxisome proliferator-activated receptor beta/delta activation in adult hearts facilitates mitochondrial function and cardiac performance under pressure-overload condition. Hypertension. 2011;57(2):223–230. https://doi.org/10.1161/HYPERTENSIONAHA.110.164590
21. Liu J, Wang P, He L, et al. Cardiomyocyte-restricted deletion of PPARbeta/delta in PPARalpha-null mice causes impaired mitochondrial biogenesis and defense, but no further depression of myocardial fatty acid oxidation. PPAR Research. 2011;13. https://doi.org/10.1155/2011/372854.372854
Supplementary files
Review
For citations:
Sveklina T.S., Shustov S.B., Kolyubayeva S.N., Kuchmin A.N., Kozlov V.A., Smirnova E.V., Zharkov A.V. Metabolic biomarkers in patients with type 2 diabetes mellitus and heart failure with preserved ejection fraction. Diabetes mellitus. 2024;27(1):15-24. (In Russ.) https://doi.org/10.14341/DM13028

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).