Diabetes mellitus as a risk factor for development retinopathy of prematurity. Review
https://doi.org/10.14341/DM12999
Abstract
Retinopathy of prematurity (ROP) is a complex and unresolved problem in pediatric ophthalmology, leading to visual disability. Low birth weight and prematurity are the main risk factors, and they form the basis of clinical recommendations for screening for ROP in all children under 35 weeks of gestational age and weighing less than 2000 g. However, many researchers point to other risk factors that can be divided into maternal, prenatal and perinatal. In this review, we consider maternal diabetes mellitus as a risk factor for ROP. Changes in the retina in premature infants and mothers with diabetes mellitus have some common features, since pathological angiogenesis occurs at the basis of these diseases. In addition, diabetes is a risk factor for preterm birth, and prematurity is a leading cause of neonatal morbidity, including the development of ROP. This suggests that maternal diabetes mellitus may have both direct and indirect effects on the development of ROP. To develop predictive models, an understanding of risk factors for ROP, the pathophysiology of retinal vascular diseases, and diseases of prematurity is necessary.
About the Authors
S. I. MakogonRussian Federation
Svetlana I. Makogon - MD, PhD, Associate Professor.
8 Sovetskaya, 656002 Barnaul
Competing Interests:
none
N. V. Gorbacheva
Russian Federation
Natalya V. Gorbacheva - MD, assistant.
Barnaul
Competing Interests:
none
Y. S. Khlopkova
Russian Federation
Yulia S. Khlopkova - MD, assistant.
Barnaul
Competing Interests:
none
References
1. Traub T, Said M, Mohamed M, Aly H. Carbon dioxide and retinopathy of prematurity in extremely low birth weight infants. J Matern Fetal Neonatal Med. 2020;33(17):2882-2888. https://doi.org/10.1080/14767058.2018.1562545
2. Cabañas Poy MJ, Montoro Ronsano JB, Castillo Salinas F, Martín Begué N, Clemente Bautista S, Gorgas Torner MQ. Association between postnatal weight gain and need for treatment in retinopathy of prematurity. J Matern Fetal Neonatal Med. 2022;35(25):8027-8031. https://doi.org/10.1080/14767058.2021.1940937
3. Darlow BA, Hutchinson JL, Henderson-Smart DJ, et al. Prenatal risk factors for severe retinopathy of prematurity among very preterm infants of the Australian and New Zealand Neonatal Network. Pediatrics. 2005;115:990. https://doi.org/10.1542/peds.2004-1309
4. IDF Diabetes Atlas, 9th edition. Brussels: International Diabetes Federation; 2021; URL: https://www.diabetesatlas.org/en/ (date of the application: 12/24/2022)
5. Dedov II, Shestakova MV, Vikulova OK, et al. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010–2022. Diabetes Mellitus. 2023;26(2):104-123 (In Russ.). https://doi.org/10.14341/DM13035
6. Aras M, Tchang BG, Pape J. Obesity and Diabetes. Nurs Clin North Am. 2021;56(4):527-541. https://doi.org/10.1016/j.cnur.2021.07.008
7. Ruze R, Liu T, Zou X, et al Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments. Front Endocrinol (Lausanne). 2023;14:1161521. https://doi.org/10.3389/fendo.2023.1161521
8. Feig DS, Donovan LE, Zinman B, et al. Metformin in women with type 2 diabetes in pregnancy (MiTy): a multicentre, international, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2020;8(10):834–844. https://doi.org/10.1016/S2213-8587(20)30310-7
9. Demidova TYu, Ushanova FO. Pathophysiological aspects of the development of gestational diabetes mellitus. Medical review. 2019;3(10(II)):86-91. (In Russ)
10. Wang H, Li N, Chivese T, et al. IDF Diabetes Atlas Committee Hyperglycaemia in Pregnancy Special Interest Group. IDF Diabetes Atlas: Estimation of Global and Regional Gestational Diabetes Mellitus Prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group’s Criteria. Diabetes Res Clin Pract. 2022;183:109050. https://doi.org/10.1016/j.diabres.2021.109050
11. Chiang MF, Quinn GE, Fielder AR et al. International Classification of Retinopathy of Prematurity, Third Edition. Ophthalmology. 2021;128(10):e51-e68. https://doi.org/10.1016/j.ophtha.2021.05.031
12. Retinopathy of prematurity / ed. V.V. Neroev, L.A. Katargina. — M.: ICAR, 2020. 222 p. (In Russ)
13. Wali AS, Rafique R, Iftikhar S, et al. High proportion of overt diabetes mellitus in pregnancy and missed opportunity for early detection of diabetes at a tertiary care centre in Pakistan. Pak J Med Sci. 2020;36(1):S38–43. https://doi.org/10.12669/pjms.36.ICON-Suppl.1723
14. Gojnic M, Todorovic J, Stanisavljevic D, et al. Maternal and Fetal Outcomes among Pregnant Women with Diabetes. Int J Environ Res Public Health. 2022;19(6):3684. https://doi.org/10.3390/ijerph19063684
15. Regnault N, Lebreton E, Tang L, et al. Maternal and neonatal outcomes according to the timing of diagnosis of hyperglycaemia in pregnancy: a nationwide cross-sectional study of 695,912 deliveries in France in 2018. Diabetologia. 2024;67:516-527. https://doi.org/10.1007/s00125-023-06066-4
16. Egan AM, Dow ML, Vella A. A review of the pathophysiology and management of diabetes in pregnancy. Mayo Clin Proc. 2020;95(12):2734-2746. https://doi.org/10.1016/j.mayocp.2020.02.019
17. Osman T, Keshk EA, Alghamdi MA, et al. Prevalence of Adverse Pregnancy Outcomes in Women With and Without Gestational Diabetes Mellitus in Al-Baha Region, Saudi Arabia. Cureus. 2024;16(1):e52421. https://doi.org/10.7759/cureus.52421
18. Karkia R, Giacchino T, Shah S, et al. Gestational Diabetes Mellitus: Association with Maternal and Neonatal Complications. Medicina (Kaunas). 2023;59(12):2096. https://doi.org/10.3390/medicina59122096
19. Anastasiou E, Farmakidis G, Gerede A, et al. Clinical practice guidelines on diabetes mellitus and pregnancy: I. Pre-existing type 1 and type 2 diabetes mellitus. Hormones. 2020;19(4):593–600. https://doi.org/10.1007/s42000-020-00192-z
20. Mañé L, Flores-Le Roux JA, et al. Impact of overt diabetes diagnosed in pregnancy in a multi-ethnic cohort in Spain. Gynecol Endocrinol. 2019;35(4):332-336. https://doi.org/10.1080/09513590.2018.1521387
21. Stogianni A, Lendahls L, Landin-Olsson M, Thunander M. Obstetric and perinatal outcomes in pregnancies complicated by diabetes, and control pregnancies, in Kronoberg, Sweden. BMC Pregnancy Childbirth. 2019;19(1):159. https://doi.org/10.1186/s12884-019-2269-8
22. Cosson E, Bentounes SA, Nachtergaele C, et al. Prognosis associated with sub-types of hyperglycaemia in pregnancy. J Clin Med. 2021;10(17):3904. https://doi.org/10.3390/jcm10173904
23. Ornoy A, Becker M, Weinstein-Fudim L, Ergaz Z. Diabetes during Pregnancy: A Maternal Disease Complicating the Course of Pregnancy with Long-Term Deleterious Effects on the Offspring. A Clinical Review. Int J Mol Sci. 2021;22(6):2965. https://doi.org/10.3390/ijms22062965
24. Relph S, Patel T, Delaney L, et al. Adverse pregnancy outcomes in women with diabetes-related microvascular disease and risks of disease progression in pregnancy: A systematic review and meta-analysis. PLoS Med. 2021;18(11):e1003856. https://doi.org/10.1371/journal.pmed.1003856
25. Kapustin R, Kopteeva E, Tiselko A, et al. Diabetes and pregnancy study (DAPSY): a 10-year single-center cohort study of pregnancies affected by diabetes. Arch Gynecol Obstet. 2023;1-9 (In Russ). https://doi.org/10.1007/s00404-023-07187-2
26. Aldhaheri S, Baghlaf H, Badeghiesh A, Dahan MH. Should pregnant women with diabetes be counseled differently if nephropathy was detected? a population database study. J Matern Fetal Neonatal Med. 2022;35(25):9614-9621. https://doi.org/10.1080/14767058.2022.2049749
27. Çilingir IGU. Pregnancy Outcomes in Women with Strictly Controlled Type 1 Diabetes Mellitus. Indian J Endocrinol Metab. 2018;22(6):798-800. https://doi.org/10.4103/ijem.IJEM_139_18
28. Lara-Barea A, Sánchez-Lechuga B, Campos-Caro A. Angiogenic Imbalance and Inflammatory Biomarkers in the Prediction of Hypertension as Well as Obstetric and Perinatal Complications in Women with Gestational Diabetes Mellitus. J Clin Med. 2022;11(6):1514. https://doi.org/10.3390/jcm11061514
29. Yuan J, Gu X, Yang J, et al. Chinese Neonatal Network. Impact of Maternal Diabetes Mellitus on Neonatal Outcomes among Infants <32 Weeks of Gestation in China: A Multicenter Cohort Study. Am J Perinatol. 2023;14. https://doi.org/10.1055/s-0043-1771501
30. Kinuthia UM, Wolf A, Langmann T. Microglia and inflammatory responses in diabetic retinopathy. Front Immunol. 2020;11:564077. https://doi.org/10.3389/fimmu.2020.564077
31. Wu PY, Fu YK, Lien RI, et al. Systemic cytokines in retinopathy of prematurity. J Pers Med. 2023;13(2):291. https://doi.org/10.3390/jpm13020291
32. Amoaku WM, Ghanchi F, Bailey C, et al. Diabetic retinopathy and diabetic macular oedema pathways and management: UK Consensus Working Group. Eye (Lond). 2020;34(Suppl 1):1‐51. https://doi.org/10.1038/s41433-020-0961-6
33. Khomyakova EN, Chestnykh AA, Shestakova TP, Loskutov IA. The coefficient of diabetic retinopathy in pregnant women with pregestational diabetes mellitus. Effective pharmacotherapy. 2022;18(45):18–21 (In Russ). https://doi.org/10.33978/2307-3586-2022-18-45-18-21
34. Widyaputri F, Rogers SL, Kandasamy R, et al. Global Estimates of Diabetic Retinopathy Prevalence and Progression in Pregnant Women With Preexisting Diabetes: A Systematic Review and Meta-analysis. JAMA Ophthalmol. 2022;140(5):486-494. https://doi.org/10.1001/jamaophthalmol.2022.0050
35. Widyaputri F, Rogers SL, Khong EWC, et al. Prevalence of diabetic retinopathy in women with pregestational diabetes during pregnancy and the postpartum. Clin Exp Ophthalmol. 2022;50(7):757-767. https://doi.org/10.1111/ceo.14111
36. Pappot N, Do NC, Vestgaard M, et al. Prevalence and severity of diabetic retinopathy in pregnant women with diabetes-time to individualize photo screening frequency. Diabet Med. 2022;39(7):e14819. https://doi.org/10.1111/dme.14819
37. Rathinavelu J, Sarvepalli SM, Bailey B, et al. The Impact of Pregnancy on Diabetic Retinopathy: A Single-Site Study of Clinical Risk Factors. Ophthalmic Res. 2023;66(1):1169-1180. https://doi.org/10.1159/000533416
38. Pomytkina NV, Sorokin EL. Investigation of diabetic retinopathy progression in women with diabetes mellitus during pregnancy. Russian Annals of Ophthalmology. 2023;139(3):30–40 (In Russ). https://doi.org/10.17116/oftalma202313903130
39. Rosu LM, Prodan-Bărbulescu C, Maghiari AL, et al. Current Trends in Diagnosis and Treatment Approach of Diabetic Retinopathy during Pregnancy: A Narrative Review. Diagnostics (Basel). 2024;14(4):369. https://doi.org/10.3390/diagnostics14040369
40. Opara CN, Akintorin M, Byrd A, et al. Maternal diabetes mellitus as an independent risk factor for clinically significant retinopathy of prematurity severity in neonates less than 1500 g. PLoS One. 2020;15(8):e0236639. https://doi.org/10.1371/journal.pone.0236639
41. Tunay ZÖ, Özdemir Ö, Acar DE, et al. Maternal Diabetes as an Independent Risk Factor for Retinopathy of Prematurity in Infants With Birth Weight of 1500 g or More. Am J Ophthalmol. 2016;168:201-206. https://doi.org/10.1016/j.ajo.2016.05.022
42. Ozgur Gursoy O, Gurer HG, Yildiz Eren C, et al. The association of various obstetric and perinatal factors with retinopathy of prematurity. Int Ophthalmol. 2022;42(9):2719-2728. https://doi.org/10.1007/s10792-022-02260-2
43. Razak A, Faden M. Association of maternal diabetes mellitus with preterm infant outcomes: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2021;106(3):271-277. https://doi.org/10.1136/archdischild-2020-320054
44. Deryabina EG, Yakornova GV, Pestryaeva LA, Sandyreva ND. Perinatal outcome in pregnancies complicated with gestational diabetes mellitus and very preterm birth: case-control study. Gynecol Endocrinol. 2016;32(sup2):52-55. https://doi.org/10.1080/09513590.2016.1232215
45. Persson M, Shah PS, Rusconi F, et al. International Network for Evaluating Outcomes of Neonates. Association of Maternal Diabetes With Neonatal Outcomes of Very Preterm and Very Low-Birth-Weight Infants: An International Cohort Study. JAMA Pediatr. 2018;172(9):867-875. https://doi.org/10.1001/jamapediatrics.2018.1811
46. Hitaka D, Morisaki N, Miyazono Y, et al. Neonatal outcomes of very low birthweight infants born to mothers with hyperglycaemia in pregnancy: a retrospective cohort study in Japan. BMJ Paediatr Open. 2019;3(1):e000491. https://doi.org/10.1136/bmjpo-2019-000491
47. Beardsall K, Vanhaesebrouck S, Ogilvy-Stuart AL, et al. Prevalence and determinants of hyperglycemia in very low birth weight infants: cohort analyses of the NIRTURE study. J Pediatr. 2010;157(5):715-719. https://doi.org/10.1016/j.jpeds.2010.04.032
48. Beardsall К. Hyperglycaemia in the Newborn Infant. Physiology Verses Pathology. Front Pediatr. 2021;9:641306. https://doi.org/10.3389/fped.2021.641306
49. Kermorvant-Duchemin Е, Le Meur G, Plaisant F, et al. Thresholds of glycemia, insulin therapy, and risk for severe retinopathy in premature infants: A cohort study. PLoS Med. 2020;17(12):e1003477. https://doi.org/10.1371/journal.pmed.1003477
50. Volodin NN, Avetisov SE, Sdobnikova SV, et al. Hyperglycemia and arterial hypertension as risk factors for retinopathy of prematurity. Issues of gynecology, obstetrics and perinatology. 2005;5-6:54-58 (In Russ).
51. Lei C, Duan J, Ge G, Zhang M. Association between neonatal hyperglycemia and retinopathy of prematurity: a meta-analysis. Eur J Pediatr. 2021;180(12):3433-3442. https://doi.org/10.1007/s00431-021-04140-w
52. Vannadil H, Moulick PS, Khan MA, et al. Hyperglycaemia as a risk factor for the development of retinopathy of prematurity: A cohort study. Med J Armed Forces India. 2020;76(1):95-102. https://doi.org/10.1016/j.mjafi.2019.04.001
53. Lee JH, Hornik CP, Testoni D, et al. Insulin, Hyperglycemia, and Severe Retinopathy of Prematurity in Extremely Low-Birth-Weight Infants. Am J Perinatol. 2016;33(4):393-400. https://doi.org/10.1055/s-0035-1565999
54. Almeida AC, Silva GA, Santini G, et al. Correlation between hyperglycemia and glycated albumin with retinopathy of prematurity. Sci Rep. 2021;11(1):22321. https://doi.org/10.1038/s41598-021-01861-8
55. Cakir B, Hellström W, Tomita Y, et al. IGF1, serum glucose, and retinopathy of prematurity in extremely preterm infants. JCI Insight. 2020;5(19):e140363. https://doi.org/10.1172/jci.insight
56. Jagla M, Szymonska I, Starzec K, Kwinta P. Glycemic variability is associated with treatment requiring retinopathy of prematurity: A case-control study. Retina. 2021;41:711-717. https://doi.org/10.1097/IAE.0000000000002949
57. Nicolaeva GV, Sidorenko EI, Iosifovna AL. Influence of the blood glucose level on the development of retinopathy of prematurity in extremely premature children. Arq Bras Oftalmol. 2015;78(4):232-5. https://doi.org/10.5935/0004-2749.20150060
58. Au SC, Tang SM, Rong SS, Chen LJ, Yam JC. Association between hyperglycemia and retinopathy of prematurity: a systemic review and meta-analysis. Sci Rep. 2015;5:9091. https://doi.org/10.1038/srep09091
59. Rath CP, Shivamallappa M, Muthusamy S, et al. Outcomes of very preterm infants with neonatal hyperglycaemia: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2022;107(3):269-280. https://doi.org/10.1136/archdischild-2020-321449
60. Esmail J, Sakaria RP, Dhanireddy R. Early Hyperglycemia Is Associated with Increased Incidence of Severe Retinopathy of Prematurity in Extremely Low Birth Weight Infants. Am J Perinatol. 2023. https://doi.org/10.1055/a-2173-8360
61. Dai C, Webster KA, Bhatt A, et al. Concurrent Physiological and Pathological Angiogenesis in Retinopathy of Prematurity and Emerging Therapies. International Journal of Molecular Sciences. 2021;22(9):4809. https://doi.org/10.3390/ijms22094809
62. Hellström A, Carlsson B, Niklasson A, et al. IGF-I Is Critical for Normal Vascularization of the Human Retina. J Clin Endocrinol Metab. 2002;87:3413-3416. https://doi.org/10.1210/jcem.87.7.8629
63. Pavlov KA, Dubova EA, Shchegolev AI. Fetoplacental angiogenesis in normal pregnancy: the role of vascular endothelial growth factor. Obstetrics and gynecology. 2011;3:11-16. (In Russ).
64. Nagy JA, Dvorak AM, Dvorak HF. VEGF-A and the induction of pathological angiogenesis. Annu Rev Pathol. 2007;2:251-275. https://doi.org/10.1146/annurev.pathol.2.010506.134925
65. Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci. 2005;109:227-241. https://doi.org/10.1042/CS20040370
66. Hansen-Pupp I, Hövel H, Hellström A, et al. Postnatal decrease in circulating insulin-like growth factor-I and low brain volumes in very preterm infants. J Clin Endocrinol Metab. 2011;96(4):1129-1135. https://doi.org/10.1210/jc.2010-2440
67. Hellstrom A, Engstrom E, Hard A-L, et al. Postnatal Serum Insulin-Like Growth Factor I Deficiency Is Associated With Retinopathy of Prematurity and Other Complications of Premature Birth. PEDIATRICS. 2003;112(5):1016-1020. https://doi.org/10.1542/peds.112.5.1016
68. Hellström A, Carlsson B, Niklasson A, et al. IGF-I Is Critical for Normal Vascularization of the Human Retina. J Clin Endocrinol Metab. 2002;87:3413-3416. https://doi.org/10.1210/jcem.87.7.8629
69. Hellström A, Perruzzi C, Ju M, et al. Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: Direct correlation with clinical retinopathy of prematurity. Proc Natl Acad Sci USA. 2001;98:5804-5808. https://doi.org/10.1073/pnas.101113998
70. Kapustin RV, Arzhanova ON, Poliakova VO, et al. Role of insulin-like growth factor-1 (IGF1R) receptor in placental tissue in gestational diabetes mellitus. Russian Bulletin of Obstetrician-Gynecologist. 2013;13(2):12-17. (In Russ.)
71. Perez-Munuzuri A, Fernandez-Lorenzo JR, Couce-Pico ML, et al. Serum levels of IGF1 are a useful predictor of retinopathy of prematurity. Acta Paediatrica. 2010;99:519-525. https://doi.org/10.1111/j.1651-2227.2009.01677.x
72. Retinopathy of prematurity. Clinical recommendations. [Electronic resource]. Association of Ophthalmologists. Clinical recommendations. 08/29/2022. URL: http://avo-portal.ru/doc/fkr/item/446-retinopatiya-nedonoshennyh (access date 08/11/2023) (In Russ.)
73. Sharokhin MA, Mamulat DR, Belousova KA, et al. System of diagnosis, observation and treatment of premature infants. Modern technologies in ophthalmology. 2021;3:396-400 (In Russ.). https://doi.org/10.25276/2312-4911-2021-3-396-400
74. Sanghi G, Gupta R, Narula S. Posterior to the ridge laser in zone 2 stage 3 retinopathy of prematurity with plus disease: Efficacy and safety. Indian J Ophthalmol. 2023;71(11):3501-3505. https://doi.org/10.4103/IJO.IJO_1361_23
75. Farvardin M, Kalantari Z, Talebnejad M, Alamolhoda M, Norouzpour A. Long-term Visual and Refractive Outcomes of Argon Laser-treated Retinopathy of Prematurity. J Ophthalmic Vis Res. 2022;17(3):384-389. https://doi.org/10.18502/jovr.v17i3.11576
76. Singh SR, Katoch D, Handa S, Kaur S, Moharana B, Dogra M, Dogra MR. Safety and efficacy of 532 nm frequency-doubled Nd-YAG green laser photocoagulation for treatment of retinopathy of prematurity. Indian J Ophthalmol. 2019;67(6):860-865. https://doi.org/10.4103/ijo.IJO_325_19
77. Tereshchenko AV, Bely YuA, Volodin PL, et al. Treatment of active stages of retinopathy of prematurity. Bulletin of the SB RAMS. 2014;34(3):98-103. (In Russ.)
78. Farvardin M, Kalantari Z, Talebnejad M, et al. Erratum: long-term visual and refractive outcomes of argon laser-treated retinopathy of prematurity. J Ophthalmic Vis Res. 2022;17(4):609-610. https://doi.org/10.18502/jovr.v17i4.12352
79. Chen J, Hao Q, Zhang J, et al. The efficacy and ocular safety following aflibercept, conbercept, ranibizumab, bevacizumab, and laser for retinopathy of prematurity: a systematic review and meta-analysis. Ital J Pediatr. 2023;49(1):136. https://doi.org/10.1186/s13052-023-01543-3
80. Barry GP, Yu Y, Ying G-S, et al. Retinal Detachment after Treatment of Retinopathy of Prematurity with Laser versus Intravitreal Anti-Vascular Endothelial Growth Factor. Ophthalmology. 2021;128(8):1188-1196. https://doi.org/10.1016/j.ophtha.2020.12.028
81. Chen P-YJ, Rossin EJ, Vavvas DG. Aflibercept for Retinopathy of Prematurity: A Systematic Review and Meta-Analysis. Ophthalmic Surg Lasers Imaging Retina. 2021;52(12):673-681. https://doi.org/10.3928/23258160-20211124-01
82. Zhang H, Yang X, Zheng F, et al. Treatment for Nontype 1 Retinopathy of Prematurity by Intravitreal Injection of Antivascular Endothelial Growth Factor Drugs. Journal of Ophthalmology. 2022;2022:6266528. https://doi.org/10.1155/2022/6266528
83. Ryu J. New aspects on the treatment of retinopathy of prematurity: currently available therapies and emerging novel therapeutics. Int J Mol Sci. 2022;23(15):8529. https://doi.org/10.3390/ijms23158529
84. Lee A, Shirley M. Ranibizumab: A Review in Retinopathy of Prematurity. Pediatric Drugs. 2022;23(1):111-117. https://doi.org/10.1007/s40272-020-00433-z
85. Hartnett ME. Retinopathy of prematurity: evolving treatment with anti-vascular endothelial growth factor. Am J Ophthalmol. 2020;218:208-213. https://doi.org/10.1016/j.ajo.2020.05.025
86. Stahl A, Lepore D, Fielder A, et al. Ranibizumab versus laser therapy for the treatment of very low birthweight infants with retinopathy of prematurity (RAINBOW): an open-label randomised controlled trial. Lancet. 2019;394(10208):1551-1559. https://doi.org/10.1016/S0140-6736(19)31344-3
87. Sen P, Agarwal AAK, Bhende P, Ganesan S. Treatment outcomes of combination of anti-vascular endothelial growth factor injection and laser photocoagulation in Type 1 ROP and APROP. Int Ophthalmol. 2022;42(1):95-101. https://doi.org/10.1007/s10792-021-02004-8
88. Sidorenko EE, Nasarenko AO, Sidorenko EI, Obrubov SA. The effectiveness of the anti-VEGF drug «ranibizumab» in the treatment of retinopathy of prematurity. Russian pediatric ophthalmology. 2019;3:17-21(In Russ.). https://doi.org/10.25276/2307-6658-2019-3-17-21
89. Barnett JM, Hubbard GB. Complications of retinopathy of prematurity treatment. Curr Opin Ophthalmol. 2021;32(5):475-481. https://doi.org/10.1097/ICU.0000000000000783
90. Tong Q, Yin H, Zhao M, et al. Outcomes and prognostic factors for aggressive posterior retinopathy of prematurity following initial treatment with intravitreal ranibizumab. BMC Ophthalmol. 2018;18:150. https://doi.org/10.1186/s12886-018-0815-1
91. Çömez A, Karaküçük Y, Özmen MC, et al. The results of intravitreal bevacizumab monotherapy for treating aggressive posterior retinopathy of prematurity and Type 1 retinopathy of prematurity. Eye (Lond). 2021;35(12):3302-3310. https://doi.org/10.1038/s41433-021-01413-4
92. Barry GP, Tauber KA, Greenberg S, et al. A comparison of respiratory outcomes after treating retinopathy of prematurity with laser photocoagulation or intravitreal bevacizumab. Ophthalmol Retina. 2020;4(12):1202-1208. https://doi.org/10.1016/j.oret.2020.06.002
93. Süren E, Özkaya D, Çetinkaya E, et al. Comparison of bevacizumab, ranibizumab and aflibercept in retinopathy of prematurity treatment. Int Ophthalmol. 2022;42(6):1905-1913. https://doi.org/10.1007/s10792-021-02188-z
94. Filippi, L, Dal Monte M. A safety review of drugs used for the treatment of retinopathy of prematurity. Expert Opinion on Drug Safety. 2020;19(11):1409-1418. https://doi.org/10.1080/14740338.2020.1826927
95. Ryu J. New aspects on the treatment of retinopathy of prematurity: currently available therapies and emerging novel therapeutics. Int J Mol Sci. 2022;23(15):8529. https://doi.org/10.3390/ijms23158529
Supplementary files
Review
For citations:
Makogon S.I., Gorbacheva N.V., Khlopkova Y.S. Diabetes mellitus as a risk factor for development retinopathy of prematurity. Review. Diabetes mellitus. 2024;27(5):487-497. (In Russ.) https://doi.org/10.14341/DM12999

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).